Testosterone may increase rat anterior cruciate ligament strength

  • W.A. Romani
    Affiliations
    Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
    Search for articles by this author
  • S.M. Belkoff
    Correspondence
    Corresponding author at: Department of Orthopaedic Surgery, The Johns Hopkins Bayview Medical Center, 5210 Eastern Avenue, Baltimore, MD 21224-2780, USA. Fax: +1 410 550 2899.
    Affiliations
    Department of Orthopaedic Surgery, The Johns Hopkins University, 5210 Eastern Avenue, Baltimore, MD 21224, USA
    Search for articles by this author
  • J.H. Elisseeff
    Affiliations
    Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
    Search for articles by this author
Published:September 19, 2016DOI:https://doi.org/10.1016/j.knee.2016.07.004

      Abstract

      Background

      Women are more likely than men to injure the anterior cruciate ligament (ACL). Human and animal trials have linked circulating estradiol to injury rate and ligament strength. Fewer studies have examined the role of testosterone. The purpose of this study was to determine if male rats with normal testosterone levels would have stronger ACLs than castrated rats.

      Methods

      Eight castrated (group C) and eight normal (group N) 12-week-old, male Sprague–Dawley rats were used for the study. Mean testosterone levels were 0.14 ng/mL (95% CI: 0.10 to 0.17) in group C and 3.54 ng/mL (95% CI: 1.32 to 5.76) in group N. After euthanasia, ACL cross-sectional area was calculated, and a servohydraulic material testing unit was used to measure ligament properties.

      Results

      Specimens from both groups had similar cross-sectional area, but N specimens showed greater mean load-to-failure (34.5 N [95% CI: 31.6 to 37.4] vs 29.2 N [95% CI: 27.9 to 30.6]) and ultimate stress (38.7 MPa [95% CI: 34.1 to 43.3] vs 31.8 MPa [95% CI: 29.8 to 33.8]). Mean energy was 27.7 mJ (95% CI: 23.1 to 32.2) in the N group and 23.4 mJ (95% CI: 18.2 to 28.6) in the C group.

      Conclusions

      Rats with normal circulating testosterone had higher ACL load-to-failure and ultimate stress, indicating that testosterone may influence ACL strength and the injury rate of the ligament.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to The Knee
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arendt E.A.
        • Agel J.
        • Dick R.
        Anterior cruciate ligament injury patterns among collegiate men and women.
        J Athl Train. 1999; 34: 86-92
        • Gwinn D.E.
        • Wilckens J.H.
        • McDevitt E.R.
        • Ross G.
        • Kao T.C.
        The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy.
        Am J Sports Med. 2000; 28: 98-102
        • Renstrom P.
        • Ljungqvist A.
        • Arendt E.
        • Beynnon B.
        • Fukubayashi T.
        • Garrett W.
        • et al.
        Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement.
        Br J Sports Med. 2008; 42: 394-412
        • Chandrashekar N.
        • Mansouri H.
        • Slauterbeck J.
        • Hashemi J.
        Sex-based differences in the tensile properties of the human anterior cruciate ligament.
        J Biomech. 2006; 39: 2943-2950
        • Hattori K.
        • Sano H.
        • Komatsuda T.
        • Saijo Y.
        • Sugita T.
        • Itoi E.
        Effect of estrogen on tissue elasticity of the ligament proper in rabbit anterior cruciate ligament: measurements using scanning acoustic microscopy.
        J Orthop Sci. 2010; 15: 584-588
        • Komatsuda T.
        • Sugita T.
        • Sano H.
        • Kusakabe T.
        • Watanuki M.
        • Yoshizumi Y.
        • et al.
        Does estrogen alter the mechanical properties of the anterior cruciate ligament? An experimental study in rabbits.
        Acta Orthop. 2006; 77: 973-980
        • Liu S.H.
        • Al-Shaikh R.A.
        • Panossian V.
        • Finerman G.A.M.
        • Lane J.M.
        Estrogen affects the cellular metabolism of the anterior cruciate ligament. A potential explanation for female athletic injury.
        Am J Sports Med. 1997; 25: 704-709
        • Lovering R.M.
        • Romani W.A.
        Effect of testosterone on the female anterior cruciate ligament.
        Am J Physiol Regul Integr Comp Physiol. 2005; 289: R15-R22
        • Romani W.
        • Patrie J.
        • Curl L.A.
        • Flaws J.A.
        The correlations between estradiol, estrone, estriol, progesterone, and sex hormone-binding globulin and anterior cruciate ligament stiffness in healthy, active females.
        J Womens Health (Larchmt). 2003; 12: 287-298
        • Romani W.A.
        • Langenberg P.
        • Belkoff S.M.
        Sex, collagen expression, and anterior cruciate ligament strength in rats.
        J Athl Train. 2010; 45: 22-28
        • Shultz S.J.
        • Kirk S.E.
        • Johnson M.L.
        • Sander T.C.
        • Perrin D.H.
        Relationship between sex hormones and anterior knee laxity across the menstrual cycle.
        Med Sci Sports Exerc. 2004; 36: 1165-1174
        • Slauterbeck J.
        • Clevenger C.
        • Lundberg W.
        • Burchfield D.M.
        Estrogen level alters the failure load of the rabbit anterior cruciate ligament.
        J Orthop Res. 1999; 17: 405-408
        • Slauterbeck J.
        • Fuzie S.
        • Smith M.
        • Clark R.
        • Hardy D.
        Estrogen and progesterone levels at time of ACL injury.
        J Athl Train. 2001; 36: S.61
        • Yu W.D.
        • Panossian V.
        • Hatch J.D.
        • Liu S.H.
        • Finerman G.A.
        Combined effects of estrogen and progesterone on the anterior cruciate ligament.
        Clin Orthop Relat Res. 2001; 383: 268-281
        • Zazulak B.T.
        • Paterno M.
        • Myer G.D.
        • Romani W.A.
        • Hewett T.E.
        The effects of the menstrual cycle on anterior knee laxity: a systematic review.
        Sports Med. 2006; 36: 847-862
        • Adachi N.
        • Nawata K.
        • Maeta M.
        • Kurozawa Y.
        Relationship of the menstrual cycle phase to anterior cruciate ligament injuries in teenaged female athletes.
        Arch Orthop Trauma Surg. 2008; 128: 473-478
        • Slauterbeck J.R.
        • Pankratz K.
        • Xu K.T.
        • Bozeman S.C.
        • Hardy D.M.
        Canine ovariohysterectomy and orchiectomy increases the prevalence of ACL injury.
        Clin Orthop Relat Res. 2004; 429: 301-305
        • Rahr-Wagner L.
        • Thillemann T.M.
        • Mehnert F.
        • Pedersen A.B.
        • Lind M.
        Is the use of oral contraceptives associated with operatively treated anterior cruciate ligament injury? A case–control study from the Danish Knee Ligament Reconstruction Registry.
        Am J Sports Med. 2014; 42: 2897-2905
        • Belanger M.J.
        • Moore D.C.
        • Crisco III, J.J.
        • Fadale P.D.
        • Hulstyn M.J.
        • Ehrlich M.G.
        Knee laxity does not vary with the menstrual cycle, before or after exercise.
        Am J Sports Med. 2004; 32: 1150-1157
        • Eiling E.
        • Bryant A.L.
        • Petersen W.
        • Murphy A.
        • Hohmann E.
        Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 126-132
        • Martineau P.A.
        • Al-Jassir F.
        • Lenczner E.
        • Burman M.L.
        Effect of the oral contraceptive pill on ligamentous laxity.
        Clin J Sport Med. 2004; 14: 281-286
        • Park S.K.
        • Stefanyshyn D.J.
        • Loitz-Ramage B.
        • Hart D.A.
        • Ronsky J.L.
        Changing hormone levels during the menstrual cycle affect knee laxity and stiffness in healthy female subjects.
        Am J Sports Med. 2009; 37: 588-598
        • Woodhouse E.
        • Schmale G.A.
        • Simonian P.
        • Tencer A.
        • Huber P.
        • Seidel K.
        Reproductive hormone effects on strength of the rat anterior cruciate ligament.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 453-460
        • Ohno H.
        • Ohmomo R.
        • Goto S.
        • Owaki M.
        • Mutoh K.
        • Oyamada T.
        • et al.
        Expression of androgen receptors in ruptured canine anterior cruciate ligament.
        Philipp J Vet Med. 2014; 51: 131-136
        • Sciore P.
        • Frank C.B.
        • Hart D.A.
        Identification of sex hormone receptors in human and rabbit ligaments of the knee by reverse transcription-polymerase chain reaction: evidence that receptors are present in tissue from both male and female subjects.
        J Orthop Res. 1998; 16: 604-610
        • Asano K.
        • Maruyama S.
        • Usui T.
        • Fujimoto N.
        Regulation of estrogen receptor alpha and beta expression by testosterone in the rat prostate gland.
        Endocr J. 2003; 50: 281-287
        • Abdel-Hamid A.A.M.
        • Ali E.M.T.
        Effect of testosterone therapy on the urinary bladder in experimental hypogonadism of rats.
        J Mol Histol. 2015; 46: 263-272
        • Zhou J.
        • Ng S.
        • Adesanya-Famuiya O.
        • Anderson K.
        • Bondy C.A.
        Testosterone inhibits estrogen-induced mammary epithelial proliferation and suppresses estrogen receptor expression.
        FASEB J. 2000; 14: 1725-1730
        • Bertolo A.
        • Baur M.
        • Aebli N.
        • Ferguson S.J.
        • Stoyanov J.
        Physiological testosterone levels enhance chondrogenic extracellular matrix synthesis by male intervertebral disc cells in vitro, but not by mesenchymal stem cells.
        Spine J. 2014; 14: 455-468
        • Da Silva J.A.P.
        • Larbre J.P.
        • Spector T.D.
        • Perry L.A.
        • Scott D.L.
        • Willoughby D.A.
        Protective effect of androgens against inflammation induced cartilage degradation in male rodents.
        Ann Rheum Dis. 1993; 52: 285-291
        • Stijak L.
        • Kadija M.
        • Djulejic V.
        • Aksic M.
        • Petronijevic N.
        • Markovic B.
        • et al.
        The influence of sex hormones on anterior cruciate ligament rupture: female study.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 2742-2749
        • Tipton C.M.
        • Tcheng T.K.
        • Mergner W.
        Ligamentous strength measurements from hypophysectomized rats.
        Am J Physiol. 1971; 221: 1144-1150
        • Light V.A.
        • Montgomery R.D.
        • Akingbemi B.T.
        Sex hormone regulation of collagen concentrations in cranial cruciate ligaments of sexually immature male rabbits.
        Am J Vet Res. 2012; 73: 1186-1193
        • Warden S.J.
        • Saxon L.K.
        • Castillo A.B.
        • Turner C.H.
        Knee ligament mechanical properties are not influenced by estrogen or its receptors.
        Am J Physiol Endocrinol Metab. 2006; 290: E1034-E1040
        • Cabaud H.E.
        • Chatty A.
        • Gildengorin V.
        • Feltman R.J.
        Exercise effects on the strength of the rat anterior cruciate ligament.
        Am J Sports Med. 1980; 8: 79-86
        • Yiannakopoulos C.K.
        • Kanellopoulos A.D.
        • Dontas I.A.
        • Trovas G.
        • Korres D.S.
        • Lyritis G.P.
        The symmetry of the medial collateral and anterior cruciate ligament properties: a biochemical study in the rat hind limb.
        J Musculoskelet Neuronal Interact. 2005; 5: 170-173
        • Woo S.L.Y.
        • Orlando C.A.
        • Camp J.F.
        • Akeson W.H.
        Effects of postmortem storage by freezing on ligament tensile behavior.
        J Biomech. 1986; 19: 399-404
        • Strickland S.M.
        • Belknap T.W.
        • Turner S.A.
        • Wright T.M.
        • Hannafin J.A.
        Lack of hormonal influences on mechanical properties of sheep knee ligaments.
        Am J Sports Med. 2003; 31: 210-215
        • Wentorf F.A.
        • Sudoh K.
        • Moses C.
        • Arendt E.A.
        • Carlson C.S.
        The effects of estrogen on material and mechanical properties of the intra- and extra-articular knee structures.
        Am J Sports Med. 2006; 34: 1948-1952
        • Dhont M.
        • VandeKerckhove D.
        • Vermeulen A.
        • Vandeweghe M.
        Daily concentrations of plasma LH, FSH, estradiol, estrone and progesterone throughout the menstrual cycle.
        Eur J Obstet Gynecol Reprod Biol. 1974; 4: S153-S159
        • Lenton E.A.
        • Lawrence G.F.
        • Coleman R.A.
        • Cooke I.D.
        Individual variation in gonadotrophin and steroid concentrations and in the lengths of the follicular and luteal phases in women with regular menstrual cycles.
        Clin Reprod Fertil. 1983; 2: 143-150
        • Yen S.S.C.
        • Vela P.
        • Rankin J.
        • Littell A.S.
        Hormonal relationships during the menstrual cycle.
        JAMA. 1970; 211: 1513-1517
        • Butcher R.L.
        • Collins W.E.
        • Fugo N.W.
        Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat.
        Endocrinology. 1974; 94: 1704-1708
        • Luther F.
        • Saino H.
        • Carter D.H.
        • Aaron J.E.
        Evidence for an extensive collagen type III/VI proximal domain in the rat femur. I. Diminution with ovariectomy.
        Bone. 2003; 32: 652-659
        • Zhao H.
        • Xia Z.
        • Cai G.
        • Du J.
        • Zhu T.
        • Shen L.
        Expression of type-I collagen and matrix metalloproteinase-9 mRNA in bone of castrated adult female rats: effects of estrogen.
        Chin Med J (Engl). 1998; 111: 551-555
        • Anderson A.F.
        • Dome D.C.
        • Gautam S.
        • Awh M.H.
        • Rennirt G.W.
        Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates.
        Am J Sports Med. 2001; 29: 58-66
        • Chandrashekar N.
        • Slauterbeck J.
        • Hashemi J.
        Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study.
        Am J Sports Med. 2005; 33: 1492-1498
        • Tipton C.M.
        • Matthes R.D.
        • Martin R.K.
        Influence of age and sex on the strength of bone–ligament junctions in knee joints of rats.
        J Bone Joint Surg Am. 1978; 60: 230-234
        • Hashemi J.
        • Chandrashekar N.
        • Cowden C.
        • Slauterbeck J.
        An alternative method of anthropometry of anterior cruciate ligament through 3-D digital image reconstruction.
        J Biomech. 2005; 38: 551-555
        • Dehghan F.
        • Muniandy S.
        • Yusof A.
        • Salleh N.
        Testosterone reduces knee passive range of motion and expression of relaxin receptor isoforms via 5alpha-dihydrotestosterone and androgen receptor binding.
        Int J Mol Sci. 2014; 15: 4619-4634
        • Zeleniuch-Jacquotte A.
        • Bruning P.F.
        • Bonfrer J.M.G.
        • Koenig K.L.
        • Shore R.E.
        • Kim M.Y.
        • et al.
        Relation of serum levels of testosterone and dehydroepiandrosterone sulfate to risk of breast cancer in postmenopausal women.
        Am J Epidemiol. 1997; 145: 1030-1038
        • Zeleniuch-Jacquotte A.
        • Shore R.E.
        • Koenig K.L.
        • Akhmedkhanov A.
        • Afanasyeva Y.
        • Kato I.
        • et al.
        Postmenopausal levels of oestrogen, androgen, and SHBG and breast cancer: long-term results of a prospective study.
        Br J Cancer. 2004; 90: 153-159