Advertisement

Effect of isolated hip abductor fatigue on single-leg landing mechanics and simulated ACL loading

  • Namwoong Kim
    Correspondence
    Corresponding author.
    Affiliations
    Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182, USA
    Search for articles by this author
  • Sae Yong Lee
    Affiliations
    Department of Physical Education, Yonsei University, 50 Yonsei-ro, Sports Science Complex, Seoul 03722, South Korea

    International Olympic Committee Research Centre KOREA, Yonsei University, 50 Yonsei-ro, Sports Science Complex, Seoul 03722, South Korea

    Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Sports Science Complex, Seoul 03722, South Korea
    Search for articles by this author
  • Sung-Cheol Lee
    Affiliations
    Department of Physical Education, Yonsei University, 50 Yonsei-ro, Sports Science Complex, Seoul 03722, South Korea

    Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Sports Science Complex, Seoul 03722, South Korea
    Search for articles by this author
  • Adam B. Rosen
    Affiliations
    School of Health and Kinesiology, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182, USA
    Search for articles by this author
  • Terry L. Grindstaff
    Affiliations
    School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Boyne Building, Omaha, NE 68178, USA
    Search for articles by this author
  • Brian A. Knarr
    Affiliations
    Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182, USA
    Search for articles by this author

      Abstract

      Background

      Altered movement biomechanics are a risk factor for ACL injury. While hip abductor weakness has been shown to negatively impact landing biomechanics, the role of this musculature and injury risk is not clear. The aim of this musculoskeletal simulation study was to determine the effect of hip abductor fatigue-induced weakness on ACL loading, force production of lower extremity muscles, and lower extremity biomechanics during single-leg landing.

      Methods

      Biomechanical data from ten healthy adults were collected before and after a fatigue protocol and used to derive subject-specific estimates of muscle forces and ACL loading using a 5-degree of freedom (DOF) model.

      Results

      There were no significant differences in knee joint angles and ACL loading between pre and post-fatigue. However, there were significant differences, due to fatigue, in lateral trunk flexion angle, total excursion of trunk, muscle forces, and joint moments.

      Conclusion

      Altered landing mechanics, due to hip abductor fatigue-induced weakness, may be associated with increased risk of ACL injury during single-leg landings. Clinical assessment or screening of ACL injury risk will benefit from subject-specific musculoskeletal models during dynamic movements. Future study considering the type of the fatigue protocols, cognitive loads, and various tasks is needed to further identify the effect of hip abductor weakness on lower extremity landing biomechanics.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Knee
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gianotti S.M.
        • Marshall S.W.
        • Hume P.A.
        • Bunt L.
        Incidence of anterior cruciate ligament injury and other knee ligament injuries: A national population-based study.
        J Sci Med Sport. 2009; 12: 622-627https://doi.org/10.1016/j.jsams.2008.07.005
        • Marks P.H.
        • Albohm M.J.
        • Ireland M.L.
        • Slauterbeck J.
        • Mann B.J.
        • Myklebust G.
        • et al.
        Understanding and preventing noncontact anterior cruciate ligament injuries.
        Am J Sports Med. 2006; 34: 1512-1532https://doi.org/10.1177/0363546506286866
        • Griffith T.B.
        • Allen B.J.
        • Levy B.A.
        • Stuart M.J.
        • Dahm D.L.
        Outcomes of repeat revision anterior cruciate ligament reconstruction.
        Am J Sports Med. 2013; 41: 1296-1301https://doi.org/10.1177/0363546513482568
        • Roos H.
        • Ornell M.
        • Gärdsell P.
        • Lohmander L.
        • Lindstrand A.
        Soccer after anterior cruciate ligament injury - An incompatible combination? A national survey of incidence and risk factors and a 7-year follow-up of 310 players.
        Acta Orthop. 1995; https://doi.org/10.3109/17453679508995501
        • Dunn W.R.
        • Spindler K.P.
        Predictors of activity level 2 years after anterior cruciate ligament reconstruction (ACLR): A multicenter orthopaedic outcomes network (MOON) ACLR cohort study.
        Am J Sports Med. 2010; https://doi.org/10.1177/0363546510370280
        • Ekstrand J.
        • Roos H.
        • Tropp H.
        Normal course of events amongst Swedish soccer players: an 8-year follow-up study.
        Br J Sports Med. 1990; https://doi.org/10.1136/bjsm.24.2.117
        • Lohmander L.S.
        • Englund P.M.
        • Dahl L.L.
        • Roos E.M.
        The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis.
        Am J Sports Med. 2007; https://doi.org/10.1177/0363546507307396
        • Øiestad B.E.
        • Holm I.
        • Aune A.K.
        • Gunderson R.
        • Myklebust G.
        • Engebretsen L.
        • et al.
        Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: A prospective study with 10 to 15 years of follow-up.
        Am J Sports Med. 2010; 38: 2201-2210https://doi.org/10.1177/0363546510373876
        • Shultz S.J.
        • Collins M.
        • Kulas A.S.
        • Benjaminse A.
        • Schmitz R.J.
        • Ford K.
        ACL research retreat VII: An update on anterior cruciate ligament injury risk factor identification, screening, and prevention.
        J Athl Train. 2016; 50: 1076-1093https://doi.org/10.4085/1062-6050-50.10.06
        • Olsen O.-E.
        • Myklebust G.
        • Engebretsen L.
        • Bahr R.
        Injury mechanisms for anterior cruciate ligament injuries in team handball.
        Am J Sports Med. 2004; 32: 1002-1012https://doi.org/10.1177/0363546503261724
        • McNair P.J.
        • Marshall R.N.
        • Matheson J.A.
        Important features associated with acute anterior cruciate ligament injury.
        N Z Med J. 1990;
        • Shimokochi Y.
        • Shultz S.J.
        Mechanisms of noncontact anterior cruciate ligament injury.
        J Athl Train. 2008; https://doi.org/10.4085/1062-6050-43.4.396
        • Patrek M.F.
        • Kernozek T.W.
        • Facsm À.
        • Willson J.D.
        • Wright G.A.
        • Doberstein S.T.
        Hip-Abductor Fatigue and Single-Leg Landing Mechanics in Women Athletes. 2011; 46: 31-42https://doi.org/10.4085/1062-6050-46.1.31
        • Ireland M.L.
        The female ACL: Why is it more prone to injury?.
        Orthop Clin North Am. 2002; https://doi.org/10.1016/S0030-5898(02)00028-7
        • Powers C.M.
        The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective.
        J Orthop Sport Phys Ther. 2003; https://doi.org/10.2519/jospt.2003.33.11.639
        • Willson J.D.
        • Dougherty C.P.
        • Ireland M.L.
        • Davis I.M.C.
        Core stability and its relationship to lower extremity function and injury.
        J Am Acad Orthop Surg. 2005; https://doi.org/10.5435/00124635-200509000-00005
        • Markolf K.L.
        • Burchfield D.M.
        • Shapiro M.M.
        • Shepard M.F.
        • Finerman G.A.M.
        • Slauterbeck J.L.
        Combined knee loading states that generate high anterior cruciate ligament forces.
        J Orthop Res. 1995; 13: 930-935https://doi.org/10.1002/jor.1100130618
        • Hewett T.E.
        • Myer G.D.
        • Ford K.R.
        • Heidt R.S.
        • Colosimo A.J.
        • McLean S.G.
        • et al.
        Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study.
        Am J Sports Med. 2005; 33: 492-501https://doi.org/10.1177/0363546504269591
        • Jacobs C.A.
        • Uhl T.L.
        • Mattacola C.G.
        • Shapiro R.
        • Rayens W.S.
        Hip abductor function and lower extremity landing kinematics: Sex differences.
        J Athl Train. 2007;
        • Willson J.D.
        • Davis I.S.
        Lower extremity strength and mechanics during jumping in women with patellofemoral pain.
        J Sport Rehabil. 2009; https://doi.org/10.1123/jsr.18.1.76
        • Geiser C.F.
        • O’Connor K.M.
        • Earl J.E.
        Effects of isolated hip abductor fatigue on frontal plane knee mechanics.
        Med Sci Sports Exerc. 2010; https://doi.org/10.1249/MSS.0b013e3181b7b227
        • Thomas A.C.
        • Palmieri-Smith R.M.
        • Mclean S.G.
        Isolated hip and ankle fatigue are unlikely risk factors for anterior cruciate ligament injury.
        Scand J Med Sci Sport. 2011; https://doi.org/10.1111/j.1600-0838.2009.01076.x
        • Patrek M.F.
        • Kernozek T.W.
        • Willson J.D.
        • Wright G.A.
        • Doberstein S.T.
        Hip-abductor fatigue and single-leg landing mechanics in women athletes.
        J Athl Train. 2011; https://doi.org/10.4085/1062-6050-46.1.31
        • Cairns S.P.
        • Knicker A.J.
        • Thompson M.W.
        • Sjøgaard G.
        Evaluation of models used to study neuromuscular fatigue.
        Exerc Sport Sci Rev. 2005;
        • Kendall F.
        • Provance P.
        • Rodgers M.
        • Romani W.
        Muscles: Testing and Function, with Posture and Pain. 1983; https://doi.org/10.1017/CBO9781107415324.004
        • Delp S.L.
        • Anderson F.C.
        • Arnold A.S.
        • Loan P.
        • Habib A.
        • John C.T.
        • et al.
        OpenSim: Open-source software to create and analyze dynamic simulations of movement.
        IEEE Trans Biomed Eng. 2007; 54: 1940-1950https://doi.org/10.1109/TBME.2007.901024
        • Knarr B.A.
        • Higginson J.S.
        • Zeni J.A.
        Change in knee contact force with simulated change in body weight.
        Comput Methods Biomech Biomed Engin. 2016; https://doi.org/10.1080/10255842.2015.1018193
        • DeMers M.S.
        • Pal S.
        • Delp S.L.
        Changes in tibiofemoral forces due to variations in muscle activity during walking.
        J Orthop Res. 2014; https://doi.org/10.1002/jor.22601
        • Morgan K.D.
        • Donnelly C.J.
        • Reinbolt J.A.
        Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: Implications for anterior cruciate ligament injury risk.
        J Biomech. 2014; 47: 3295-3302https://doi.org/10.1016/j.jbiomech.2014.08.016
        • Xu H.
        • Bloswick D.
        • Merryweather A.
        An improved OpenSim gait model with multiple degrees of freedom knee joint and knee ligaments.
        Comput Methods Biomech Biomed Engin. 2015; 18: 1217-1224https://doi.org/10.1080/10255842.2014.889689
        • Donnelly C.J.
        • Lloyd D.G.
        • Elliott B.C.
        • Reinbolt J.A.
        Optimizing whole-body kinematics to minimize valgus knee loading during sidestepping: Implications for ACL injury risk.
        J Biomech. 2012; 45: 1491-1497https://doi.org/10.1016/j.jbiomech.2012.02.010
        • Woo S.L.Y.
        • Hollis J.M.
        • Adams D.J.
        • Lyon R.M.
        • Takai S.
        Tensile properties of the human femur- anterior cruciate ligament-tibia complex.
        Am J Sports Med. 1991; 19: 217-225
        • Thelen D.G.
        • Anderson F.C.
        Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
        J Biomech. 2006; 39: 1107-1115https://doi.org/10.1016/j.jbiomech.2005.02.010
        • Thelen D.G.
        • Anderson F.C.
        • Delp S.L.
        Generating dynamic simulations of movement using computed muscle control.
        J Biomech. 2003;
        • Sullivan G.M.
        • Feinn R.
        Using effect size—or why the P value is not enough.
        J Grad Med Educ. 2012; https://doi.org/10.4300/jgme-d-12-00156.1
        • Pataky T.C.
        Generalized n-dimensional biomechanical field analysis using statistical parametric mapping.
        J Biomech. 2010; https://doi.org/10.1016/j.jbiomech.2010.03.008
        • Mokhtarzadeh H.
        • Ewing K.
        • Janssen I.
        • Yeow C.H.
        • Brown N.
        • Lee P.V.S.
        The effect of leg dominance and landing height on ACL loading among female athletes.
        J Biomech. 2017; 60: 181-187https://doi.org/10.1016/j.jbiomech.2017.06.033
        • Heinert B.L.
        • Kernozek T.W.
        • Greany J.F.
        • Fater D.C.
        Hip abductor weakness and lower extremity kinematics during running.
        J Sport Rehabil. 2016; https://doi.org/10.1123/jsr.17.3.243
        • Geiser C.F.
        • O’Connor K.M.
        • Earl J.E.
        Effects of isolated hip abductor fatigue on frontal plane knee mechanics.
        Med Sci Sports Exerc. 2010; 42: 535-545https://doi.org/10.1249/MSS.0b013e3181b7b227
        • Hewett T.E.
        • Myer G.D.
        The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury.
        Exerc Sport Sci Rev. 2011; https://doi.org/10.1097/JES.0b013e3182297439
        • Zajac F.E.
        • Gordon M.E.
        Determining muscle’s force and action in multi-articular movement.
        Exerc Sport Sci Rev. 1989; https://doi.org/10.1249/00003677-198900170-00009
        • Collings T.J.
        • Gorman A.D.
        • Stuelcken M.C.
        • Mellifont D.B.
        • Sayers M.G.L.
        Exploring the justifications for selecting a drop landing task to assess injury biomechanics: a narrative review and analysis of landings performed by female netball players.
        Sport Med. 2019; https://doi.org/10.1007/s40279-018-01045-x
        • Collings T.J.
        • Gorman A.D.
        • Stuelcken M.C.
        • Mellifont D.B.
        • Sayers M.G.L.
        Exploring the justifications for selecting a drop landing task to assess injury biomechanics: a narrative review and analysis of landings performed by female netball players.
        Sport Med. 2019; 49: 385-395https://doi.org/10.1007/s40279-018-01045-x
        • Lapointe A.P.
        • Nolasco L.A.
        • Sosnowski A.
        • Andrews E.
        • Martini D.N.
        • Palmieri-Smith R.M.
        • et al.
        Kinematic differences during a jump cut maneuver between individuals with and without a concussion history.
        Int J Psychophysiol. 2018; 132: 93-98https://doi.org/10.1016/j.ijpsycho.2017.08.003
        • Blackburn J.T.
        • Padua D.A.
        Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.
        J Athl Train. 2009; https://doi.org/10.4085/1062-6050-44.2.174
        • Almonroeder T.G.
        • Kernozek T.
        • Cobb S.
        • Slavens B.
        • Wang J.
        • Huddleston W.
        Cognitive Demands Influence Lower Extremity Mechanics During a Drop Vertical Jump Task in Female Athletes.
        J Orthop Sport Phys Ther. 2018; https://doi.org/10.2519/jospt.2018.7739
        • Edwards S.
        • Steele J.R.
        • McGhee D.E.
        Does a drop landing represent a whole skill landing and is this moderated by fatigue?.
        Scand J Med Sci Sport. 2010; https://doi.org/10.1111/j.1600-0838.2009.00964.x
        • Barber-Westin S.D.
        • Noyes F.R.
        Effect of fatigue protocols on lower limb neuromuscular function and implications for anterior cruciate ligament injury prevention training: a systematic review.
        Am J Sports Med. 2017; 45: 3388-3396https://doi.org/10.1177/0363546517693846
      1. P MF, K TW, W JD, W GA, D ST. Hip-abductor fatigue and single-leg landing mechanics in women athletes. J Athl Train 2011;46:31–42.

        • Padua D.A.
        • DiStefano L.J.
        Sagittal plane knee biomechanics and vertical ground reaction forces are modified following ACL injury prevention programs: A systematic review.
        Sports Health. 2009; 1: 165-173https://doi.org/10.1177/1941738108330971
        • Olsen O.
        • Myklebust G.
        • Engebretsen L.
        • Bahr R.
        Injury mechanisms for anterior cruciate ligament injuries in team handball.
        Am J Sport Med. 2004; https://doi.org/10.1177/0363546503261724