Advertisement

How to fix a tibial tubercle osteotomy with distalisation: A finite element analysis

      Abstract

      Background

      Antero-medialisation osteotomy combined with a distalisation procedure may require a more stable fixation as the osteotomy fragment loses both proximal and distal support. This finite element analysis aimed to compare the mechanical behaviour of different fixation techniques in tibial tubercle antero-medialisation osteotomy combined with distalisation procedure.

      Methods

      Tibial tubercle osteotomy combined with distalisation was modelled based on computerised tomography data, which were acquired from a patient with patellar instability requiring this procedure. Six different fixation configurations with two 3.5-mm cortical screws (1), two 4.5-mm cortical screws (2), three 3.5-mm cortical screws (3), three 4.5-mm cortical screws (4), three 3.5-mm screws with 1/3 tubular plate (5), and four 3.5-mm screws with 1/3 tubular plate (6) were created. A total of 1654 N of force was applied to the patellar tendon footprint on the tibial tubercle. Sliding, gap formation, and total deformation between the osteotomy components were analyzed.

      Results

      Maximum sliding (0.660 mm), gap formation (0.661 mm), and displacement (1.267 mm) were seen with two 3.5-mm screw fixation, followed by two 4.5-mm screws, three 3.5-mm screws, and three 4.5-mm screws, respectively, in the screw-only group. Overall, the minimum displacement was observed with the four 3.5-mm screws with 1/3 tubular plate fixation model.

      Conclusions

      Plate fixation might be recommended for tibial tubercle antero-medialisation osteotomy combined with distalisation procedure because it might allow early active range of motion exercises and weight-bearing.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Knee
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Knapik D.M.
        • Kunze K.N.
        • Azua E.
        • Vadhera A.
        • Yanke A.B.
        • Chahla J.
        Radiographic and clinical outcomes after tibial tubercle osteotomy for the treatment of patella alta: A systematic review and meta-analysis.
        Am J Sports Med. 2021; 26https://doi.org/10.1177/03635465211012371
        • Dejour H.
        • Walch G.
        • Nove-Josserand L.
        • Guier C.
        Factors of patellar instability: an Anatomic radiographic study.
        Knee Surg Sports Traumatol Arthrosc. 1994; 2: 19-26https://doi.org/10.1007/BF01552649
        • Payne J.
        • Rimmke N.
        • Schmitt L.C.
        • Flanigan D.C.
        • Magnussen R.A.
        The incidence of complications of tibial tubercle osteotomy: A systematic review.
        Arthroscopy. 2015; 31: 1819-1825https://doi.org/10.1016/j.arthro.2015.03.028
      1. Noyes FR, Barber-Westin SD. Operative options for extensor mechanism malalignment and patellar dislocation. In: Noyes FR, editor. Noyes’ Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes, 2nd ed., Philadelphia: Elsevier; 2017, p. 970-1013. https://doi.org/10.1016/B978-0-323-32903-3.00035-4.

        • Fulkerson J.P.
        • Becker G.J.
        • Meaney J.A.
        • Miranda M.
        • Folcik M.A.
        Anteromedial tibial tubercle transfer without bone graft.
        Am J Sports Med. 1990; 18 (discussion 496-7): 490-496https://doi.org/10.1177/036354659001800508
        • Maffulli N.
        Editorial commentary: Standing the test of time and sport: Fulkerson tibial tubercle osteotomy of the knee.
        Arthroscopy. 2018; 34: 1030-1031https://doi.org/10.1016/j.arthro.2017.12.023
        • Johnson A.A.
        • Cosgarea A.J.
        • Wolfe E.L.
        Complications of tibial tuberosity osteotomy.
        Sports Med Arthrosc Rev. 2017; 25 (Erratum in: Sports Med Arthrosc Rev. 2018;26(2):86. Wolfe, Elizabeth L [added]): 85-91https://doi.org/10.1097/JSA.0000000000000151
        • Yang J.S.
        • Fulkerson J.P.
        • Obopilwe E.
        • Voss A.
        • Divenere J.
        • Mazzocca A.D.
        • et al.
        Patellofemoral contact pressures after patellar distalization: A biomechanical study.
        Arthroscopy. 2017; 33: 2038-2044https://doi.org/10.1016/j.arthro.2017.06.043
        • Leite C.B.G.
        • Santos T.P.
        • Giglio P.N.
        • Pécora J.R.
        • Camanho G.L.
        • Gobbi R.G.
        Tibial tubercle osteotomy with distalization is a safe and effective procedure for patients with patella alta and patellar instability.
        Orthop J Sports Med. 2021; https://doi.org/10.1177/2325967120975101
        • Stevens J.M.
        • Barton S.B.
        • Alexander M.
        • Eldridge J.D.
        • Clark D.
        Plate and screw fixation of arthroscopically assisted tibial tuberosity osteotomy: Technique and results.
        Eur J Orthop Surg Traumatol. 2020; 30: 139-145https://doi.org/10.1007/s00590-019-02536-x
        • Frame M.
        • Hauck O.
        • Newman M.
        • Cirtautas A.
        • Wijdicks C.
        Suture tape augmentation of screw fixation reduces fragment migration in tibial tubercle osteotomy: A biomechanical study.
        Orthop J Sports Med. 2021; 9https://doi.org/10.1177/23259671211038495
        • Caldwell P.E.
        • Bohlen B.A.
        • Owen J.R.
        • Brown M.H.
        • Harris B.
        • Wayne J.S.
        • et al.
        Dynamic confirmation of fixation techniques of the tibial tubercle osteotomy.
        Clin Orthop Relat Res. 2004; 424: 173-179https://doi.org/10.1097/01.blo.0000130205.57095.a2
        • Warner B.T.
        • Kamath G.V.
        • Spang J.T.
        • Weinhold P.S.
        • Creighton R.A.
        Comparison of fixation methods after anteromedialization osteotomy of the tibial tubercle for patellar instability.
        Arthroscopy. 2013; 29: 1628-1634https://doi.org/10.1016/j.arthro.2013.06.020
        • Nurmi J.T.
        • Itälä A.
        • Sihvonen R.
        • Sillanpää P.
        • Kannus P.
        • Sievänen H.
        • et al.
        Bioabsorbable versus metal screw in the fixation of tibial tubercle transfer: A cadaveric biomechanical study.
        Orthop J Sports Med. 2017; 5https://doi.org/10.1177/2325967117714433
        • Davis K.
        • Caldwell P.
        • Wayne J.
        • Jiranek W.A.
        Mechanical comparison of fixation techniques for the tibial tubercle osteotomy.
        Clin Orthop Relat Res. 2000; 380: 241-249https://doi.org/10.1097/00003086-200011000-00033
        • Chang C.W.
        • Chen Y.N.
        • Li C.T.
        • Chung C.R.
        • Tseng C.C.
        • Chang C.H.
        • et al.
        Biomechanical investigation of tibial tubercle osteotomy fixed with various screw configurations.
        Injury. 2019; 50: 263-271https://doi.org/10.1016/j.injury.2018.12.004
        • Chang C.W.
        • Chen Y.N.
        • Li C.T.
        • Chung C.R.
        • Chang C.H.
        • Peng Y.T.
        Finite element study of the effects of fragment shape and screw configuration on the mechanical behaviour of tibial tubercle osteotomy.
        J Orthop Surg (Hong Kong). 2019; 27https://doi.org/10.1177/2309499019861145
        • Celik T.
        Biomechanical evaluation of the screw preload values used in the plate placement for bone fractures.
        Proc Inst Mech Eng H. 2021; 235: 141-147https://doi.org/10.1177/0954411920964628
        • Gao X.
        • Fraulob M.
        • Haïat G.
        Biomechanical behaviours of the bone-implant interface: a review.
        J R Soc Interface. 2019; 16: 20190259https://doi.org/10.1098/rsif.2019.0259
        • Hayes W.C.
        • Perren S.M.
        Plate-bone friction in the compression fixation of fractures.
        Clin Orthop Relat Res. 1972; 89: 236-240
        • Eberle S.
        • Gerber C.
        • von Oldenburg G.
        • Högel F.
        • Augat P.
        A biomechanical evaluation of orthopaedic implants for hip fractures by finite element analysis and in-vitro tests.
        Proc Inst Mech Eng H. 2010; 224: 1141-1152https://doi.org/10.1243/09544119JEIM799
        • Dong X.N.
        • Acuna R.L.
        • Luo Q.
        • Wang X.
        Orientation dependence of progressive post-yield behaviour of human cortical bone in compression.
        J Biomech. 2012; 45: 2829-2834https://doi.org/10.1016/j.jbiomech.2012.08.034
        • Wang X.
        • Nyman J.S.
        • Dong X.
        • Leng H.
        • Reyes M.
        Fundamental biomechanics in bone tissue engineering.
        Synthesis Lectures Tissue Eng. 2010; 2: 1-225https://doi.org/10.2200/s00246ed1v01y200912tis004
        • Kim S.H.
        • Chang S.H.
        • Jung H.J.
        The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues.
        Compos Struct. 2010; 92: 2109-2118https://doi.org/10.1016/j.compstruct.2009.09.051
        • Klekiel T.
        • Będziński R.
        Finite element analysis of large deformation of articular cartilage in upper ankle joint of occupant in military vehicles during explosion.
        Arch Metall Mater. 2015; 60: 2115-2121https://doi.org/10.1515/amm-2015-0356
      2. Oldani C, Dominguez A. “Titanium as a biomaterial for implants,” in Recent Advances in Arthroplasty (InTech) 2012. http://www.intechopen.com/books/recent-advances-inarthroplasty/titanium-as-a-biomaterial-for-implants [accessed 30 November 2021].

        • Alonso-Rasgado T.
        • Jimenez-Cruz D.
        • Karski M.
        3-D computer modelling of malunited posterior malleolar fractures: Effect of fragment size and offset on ankle stability, contact pressure and pattern.
        J Foot Ankle Res. 2017; 10: 13https://doi.org/10.1186/s13047-017-0194-5
        • Novitskaya E.
        • Zin C.
        • Chang N.
        • Cory E.
        • Chen P.
        • D'Lima D.
        • et al.
        Creep of trabecular bone from the human proximal tibia.
        Mater Sci Eng C Mater Biol Appl. 2014; 40: 219-227https://doi.org/10.1016/j.msec.2014.03.057
        • Brys G.
        • Hubert M.
        • Struyf A.
        A robust measure of skewness.
        J Comput Graph Stat. 2004; 13: 996-1017https://doi.org/10.1198/106186004X12632
      3. ANSYS Product Doc. ANSYS Meshing User’s Guide: Skewness (Release 2019 R2). ANSYS Inc, USA. https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v191/wb2_help/wb2_help.html [accessed 25 September 2020].

        • Jensen N.C.
        • Hvid I.
        • Krøner K.
        Strength pattern of cancellous bone at the ankle joint.
        Eng Med. 1988; 17: 71-76https://doi.org/10.1243/emed_jour_1988_017_020_02
        • Sierpowska J.
        • Hakulinen M.A.
        • Töyräs J.
        • Day J.S.
        • Weinans H.
        • Jurvelin J.S.
        • et al.
        Prediction of mechanical properties of human trabecular bone by electrical measurements.
        Physiol Meas. 2005; 26: S119-S131https://doi.org/10.1088/0967-3334/26/2/012
        • Hernigou J.
        • Chahidi E.
        • Kashi M.
        • et al.
        Risk of vascular injury when screw drilling for tibial tuberosity transfer.
        Int Orthop. 2018; 42: 1165-1174https://doi.org/10.1007/s00264-017-3554-7
        • Shetty A.A.
        • Tindall A.J.
        • Nickolaou N.
        • James K.D.
        • Ignotus P.
        A safe zone for the passage of screws through the posterior tibial cortex in tibial tubercle transfer.
        Knee. 2005; 12: 99-101https://doi.org/10.1016/j.knee.2004.03.010
        • Chalidis B.
        • Kitridis D.
        • Givissis P.
        Tibial tubercle osteotomy in revision total knee arthroplasty: A systematic review.
        World J Orthop. 2020; 11: 294-303https://doi.org/10.5312/wjo.v11.i6.294
        • Cosgarea A.J.
        • Schatzke M.D.
        • Seth A.K.
        • Litsky A.S.
        Biomechanical analysis of flat and oblique tibial tubercle osteotomy for recurrent patellar instability.
        Am J Sports Med. 1999; 27: 507-512https://doi.org/10.1177/03635465990270041601
        • Saltzman B.M.
        • Rao A.
        • Erickson B.J.
        • Cvetanovich G.L.
        • Levy D.
        • Bach Jr, B.R.
        • et al.
        A systematic review of 21 tibial tubercle osteotomy studies and more than 1000 knees: Indications, clinical outcomes, complications, and reoperations.
        Am J Orthop (Belle Mead NJ). 2017; 46: E396-E407
        • Tecklenburg K.
        • Feller J.A.
        • Whitehead T.S.
        • Webster K.E.
        • Elzarka A.
        Outcome of surgery for recurrent patellar dislocation based on the distance of the tibial tuberosity to the trochlear groove.
        J Bone Joint Surg Br. 2010; 92: 1376-1380https://doi.org/10.1302/0301-620X.92B10.24439
        • Shelbourne K.D.
        • Porter D.A.
        • Rozzi W.
        Use of a modified Elmslie-Trillat procedure to improve abnormal patellar congruence angle.
        Am J Sports Med. 1994; 122: 318-323https://doi.org/10.1177/036354659402200304
        • Ünal M.
        • Demirayak E.
        • Ertan M.B.
        • Kilicaslan O.F.
        • Kose O.
        Bioabsorbable magnesium screw fixation for tibial tubercle osteotomy; a preliminary study.
        Acta Biomed [Internet]. 2021; 92 ([accessed 27 November 2021])
        • Magnussen R.A.
        • De Simone V.
        • Lustig S.
        • Neyret P.
        • Flanigan D.C.
        Treatment of patella alta in patients with episodic patellar dislocation: a systematic review.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 2545-2550https://doi.org/10.1007/s00167-013-2445-8
        • Dejour D.H.
        • Mesnard G.
        • Giovannetti de Sanctis E.
        Updated treatment guidelines for patellar instability: “un menu à la carte”.
        J Exp Orthop. 2021; https://doi.org/10.1186/s40634-021-00430-2