Advertisement

The effects of initial graft tension on femorotibial relationship following anatomical rectangular tunnel anterior cruciate ligament reconstruction using bone–patellar tendon–bone graft

      Abstract

      Background

      The purpose of this study was to elucidate the effects of the difference of initial graft tension on the femorotibial relationship on an axial plane and its chronological change following anatomical anterior cruciate ligament (ACL) reconstruction.

      Methods

      A total of 63 patients who underwent anatomical ACL reconstruction were included in this study. The graft was fixed at full knee extension with manual maximum (higher graft tension; group H) and 80 N (lower graft tension; group L) pulls in 31 and 32 patients, respectively. The femorotibial positional relationship in axial computed tomography at 1 week and 1 year postoperatively were retrospectively evaluated. The side-to-side differences (SSDs) and the amount of changes of SSDs over 1 year were compared between groups.

      Results

      The SSDs of the external rotational angle of the tibia in group H were significantly larger than those in group L at postoperative 1 week (2.7 ± 3.9° vs. 0.3 ± 3.3°; P < 0.01). The amount of internal rotational changes of SSDs of the internal–external rotational angles over 1 year in group H was significantly larger than that in group L (−3.6 ± 3.9° vs. − 0.3 ± 2.7°; P < 0.01). No significant differences were observed on the anterior–posterior translation distance and medial–lateral shift distance.

      Conclusion

      The application of higher initial graft tension resulted in excessive external rotation of the tibia to the femur at 1 week postoperatively in anatomical ACL reconstruction, and the excessive early external tibial rotation had resolved over 1 year.

      Keywords

      Abbreviations:

      ACL (Anterior cruciate ligament), AP (Anterior–posterior), BMI (Body mass index), BTB (Bone–patellar tendon–bone), CT (Computed tomography), FPC (Femoral posterior condyle), HT (Hamstring tendon), IE (Internal–external), ML (Medial–lateral), PCL (Posterior cruciate ligament), SD (Standard deviation), SSD (Side-to-side difference)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Knee
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chen W.
        • Li H.
        • Chen Y.
        • Jiang F.
        • Wu Y.
        • Chen S.
        Bone-patellar tendon-bone autografts versus hamstring autografts using the same suspensory fixations in acl reconstruction: a systematic review and meta-analysis. Orthop.
        J Sports Med. 2019; 7 (2325967119885314)
        • Kruse L.M.
        • Gray B.
        • Wright R.W.
        Rehabilitation after anterior cruciate ligament reconstruction: a systematic review.
        J Bone Joint Surg Am. 2012; 94: 1737-1748
        • Mae T.
        • Shino K.
        • Nakata K.
        • Toritsuka Y.
        • Otsubo H.
        • Fujie H.
        Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part II: effect of knee flexion angle.
        Am J Sports Med. 2008; 36: 1094-1100
        • Shino K.
        • Suzuki T.
        • Iwahashi T.
        • Mae T.
        • Nakamura N.
        • Nakata K.
        • et al.
        The resident’s ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1164-1168
        • Nicholas S.J.
        • D'Amato M.J.
        • Mullaney M.J.
        • Tyler T.F.
        • Kolstad K.
        • McHugh M.P.
        A prospectively randomized double-blind study on the effect of initial graft tension on knee stability after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2004; 32: 1881-1886
        • Zarins B.
        • Rowe C.R.
        Combined anterior cruciate-ligament reconstruction using semitendinosus tendon and iliotibial tract.
        J Bone Joint Surg Am. 1986; 68: 160-177
        • Suzuki T.
        • Shino K.
        • Otsubo H.
        • Suzuki D.
        • Mae T.
        • Fujimiya M.
        • et al.
        Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft.
        Arthroscopy. 2014; 30: 1294-1302
        • Katsuragi R.
        • Yasuda K.
        • Tsujino J.
        • Keira M.
        • Kaneda K.
        The effect of nonphysiologically high initial tension on the mechanical properties of in situ frozen anterior cruciate ligament in a canine model.
        Am J Sports Med. 2000; 28: 47-56
        • Yoshiya S.
        • Andrish J.T.
        • Manley M.T.
        • Bauer T.W.
        Graft tension in anterior cruciate ligament reconstruction. An in vivo study in dogs.
        Am J Sports Med. 1987; 15: 464-470
        • Brady M.F.
        • Bradley M.P.
        • Fleming B.C.
        • Fadale P.D.
        • Hulstyn M.J.
        • Banerjee R.
        Effects of initial graft tension on the tibiofemoral compressive forces and joint position after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2007; 35: 395-403
        • Mae T.
        • Shino K.
        • Nakata K.
        • Toritsuka Y.
        • Otsubo H.
        • Fujie H.
        Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part I: effect of initial tension.
        Am J Sports Med. 2008; 36: 1087-1093
        • Taketomi S.
        • Inui H.
        • Tahara K.
        • Shirakawa N.
        • Tanaka S.
        • Nakagawa T.
        Effects of initial graft tension on femoral tunnel widening after anatomic anterior cruciate ligament reconstruction using a bone-patellar tendon-bone graft.
        Arch Orthop Trauma Surg. 2017; 137: 1285-1291
        • Tahara K.
        • Yamagami R.
        • Taketomi S.
        • Inui H.
        • Tanaka S.
        High initial graft tension increases external tibial rotation on the axial plane after anatomical anterior cruciate ligament reconstruction.
        Arch Orthop Trauma Surg. 2021; https://doi.org/10.1007/s00402-021-04098-2
        • Matsuo T.
        • Mae T.
        • Shino K.
        • Kita K.
        • Tachibana Y.
        • Sugamoto K.
        • et al.
        Tibiofemoral relationship following anatomic triple-bundle anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 2128-2135
        • Tachibana Y.
        • Mae T.
        • Shino K.
        • Matsuo T.
        • Sugamoto K.
        • Yoshikawa H.
        • et al.
        Sequential analysis of three-dimensional tibiofemoral relationship through anatomic anterior cruciate ligament reconstruction with gravity-assisted radiographic technique in prone position.
        Asia Pac J Sports Med Arthrosc Rehabil Technol. 2019; 18: 11-17
        • Nakagawa T.
        • Takeda H.
        • Nakajima K.
        • Nakayama S.
        • Fukai A.
        • Kachi Y.
        • et al.
        Intraoperative 3-dimensional imaging-based navigation-assisted anatomic double-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2008; 24: 1161-1167
        • Akkaya S.
        • Akkaya N.
        • Agladıoglu K.
        • Gungor H.R.
        • Ok N.
        • Özçakar L.
        Real-time elastography of patellar tendon in patients with auto-graft bone-tendon-bone anterior cruciate ligament reconstruction.
        Arch Orthop Trauma Surg. 2016; 136: 837-842
        • Shino K.
        • Nakata K.
        • Nakamura N.
        • Toritsuka Y.
        • Horibe S.
        • Nakagawa S.
        • et al.
        Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement.
        Arthroscopy. 2008; 24: 1178-1183
        • Ferretti M.
        • Ekdahl M.
        • Shen W.
        • Fu F.H.
        Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study.
        Arthroscopy. 2007; 23: 1218-1225
        • Siebold R.
        • Schuhmacher P.
        • Fernandez F.
        • Śmigielski R.
        • Fink C.
        • Brehmer A.
        • et al.
        Flat midsubstance of the anterior cruciate ligament with tibial ‘‘C’’-shaped insertion site.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 3136-3142
        • Tensho K.
        • Shimodaira H.
        • Aoki T.
        • Narita N.
        • Kato H.
        • Kakegawa A.
        • et al.
        Bony landmarks of the anterior cruciate ligament tibial footprint: a detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations.
        Am J Sports Med. 2014; 42: 1433-1440
        • Kanda Y.
        Investigation of the freely available easy-to-use software 'EZR' for medical statistics.
        Bone Marrow Transplant. 2013; 48: 452-458
        • Udagawa K.
        • Niki Y.
        • Enomoto H.
        • Toyama Y.
        • Suda Y.
        Factors influencing graft impingement on the wall of the intercondylar notch after anatomic double-bundle anterior cruciate ligament reconstruction.
        Am J Sports Med. 2014; 42: 2219-2225
        • Park H.-S.
        • Ahn C.
        • Fung D.T.
        • Ren Y.
        • Zhang L.-Q.
        A knee-specific finite element analysis of the human anterior cruciate ligament impingement against the femoral intercondylar notch.
        J Biomech. 2010; 43: 2039-2042
        • Mae T.
        • Shino K.
        • Matsumoto N.
        • Natsu-ume T.
        • Yoneda K.
        • Yoshikawa H.
        • et al.
        Anatomic double-bundle anterior cruciate ligament reconstruction using hamstring tendons with minimally required initial tension.
        Arthroscopy. 2010; 26: 1289-1295
        • Yoshiya S.
        • Kurosaka M.
        • Ouchi K.
        • Kuroda R.
        • Mizuno K.
        Graft tension and knee stability after anterior cruciate ligament reconstruction.
        Clin Orthop Relat Res. 2002; 394: 154-160
        • Höher J.
        • Möller H.D.
        • Fu F.H.
        Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction?.
        Knee Surg Sports Traumatol Arthrosc. 1998; 6: 231-240
        • Webster K.E.
        • Feller J.A.
        • Hameister K.A.
        Bone tunnel enlargement following anterior cruciate ligament reconstruction: a randomised comparison of hamstring and patellar tendon grafts with 2-year follow-up.
        Knee Surg Sports Traumatol Arthrosc. 2001; 9: 86-91
        • O’Neill B.J.
        • Byrne F.J.
        • Hirpara K.M.
        • Brennan W.F.
        • McHugh P.E.
        • Curtin W.
        Anterior cruciate ligament graft tensioning. Is the maximal sustained one-handed pull technique reproducible?.
        BMC Res Notes. 2011; 4: 244
        • Markolf K.L.
        • Gorek J.F.
        • Kabo J.M.
        • Shapiro M.S.
        Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique.
        J Bone Joint Surg Am. 1990; 72: 557-567