Advertisement

Rotational mismatch between femoral and tibial components should be avoided in JOURNEY II bi-cruciate stabilized total knee arthroplasty

Published:August 02, 2022DOI:https://doi.org/10.1016/j.knee.2022.07.012

      Abstract

      Background

      JOURNEY II bi-cruciate stabilized (BCS) knee system, a guided motion total knee arthroplasty (TKA), has been reported to reproduce physiological knee kinematic motion with good clinical outcomes. However, this guided system may be sensitive to the femorotibial rotational alignment.

      Method

      Forty-four patients (50 knees) who underwent JOURNEY II BCS TKA were included in this retrospective study. The 2011 Knee Society Score (KSS) and range of motion were assessed pre-operatively and one year postoperatively. The femoral component rotational angle relative to the surgical epicondylar axis and the tibial component rotational angle relative to Akagi’s line were measured postoperatively. The absolute difference between the femoral and tibial component rotational angles was defined as femorotibial component rotational mismatch. The correlation between the parameters of these rotational alignments and postoperative clinical outcomes was evaluated. Additionally, receiver operating characteristic curve analysis was performed to determine the optimal cut-off point of the femorotibial component rotational mismatch.

      Results

      Mean femoral and tibial component rotational angles were 0.4° (internal rotation) and 0.7° (external rotation), respectively. The rotational mismatch of the femorotibial component was 3.2°. There were negative correlations between femorotibial rotational mismatch and clinical outcomes, including objective knee indicators, patient satisfaction, functional activities, and total 2011 KSS. The area under the curve of the femorotibial component rotational mismatch was 0.768 and the cut-off value identified by the Youden index was 2.8°.

      Conclusions

      Excessive rotational mismatch between the femoral and tibial components can negatively influence the clinical outcomes of JOURNEY II BCS TKA.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Knee
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Christen B.
        • Neukamp M.
        • Aghayev E.
        Consecutive series of 226 journey bicruciate substituting total knee replacements: Early complication and revision rates.
        BMC Musculoskelet Disord. 2014; 15: 395https://doi.org/10.1186/1471-2474-15-395
        • Christen M.
        • Aghayev E.
        • Christen B.
        Short-term functional versus patient-reported outcome of the bicruciate stabilized total knee arthroplasty: Prospective consecutive case series.
        BMC Musculoskelet Disord. 2014; 15: 435https://doi.org/10.1186/1471-2474-15-435
        • Halewood C.
        • Risebury M.
        • Thomas N.P.
        • Amis A.A.
        Kinematic behaviour and soft tissue management in guided motion total knee replacement.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 3074-3082https://doi.org/10.1007/s00167-014-2933-5
        • Iriuchishima T.
        • Ryu K.
        A comparison of rollback ratio between Bicruciate substituting total knee arthroplasty and Oxford unicompartmental knee arthroplasty.
        J Knee Surg. 2018; 31: 568-572https://doi.org/10.1055/s-0037-1604445
        • Digennaro V.
        • Zambianchi F.
        • Marcovigi A.
        • Mugnai R.
        • Fiacchi F.
        • Catani F.
        Design and kinematics in total knee arthroplasty.
        Int Orthop. 2014; 38: 227-233https://doi.org/10.1007/s00264-013-2245-2
        • Arnout N.
        • Vandenneucker H.
        • Bellemans J.
        Posterior dislocation in total knee replacement: A price for deep flexion?.
        Knee Surg Sports Traumatol Arthrosc. 2011; 19: 911-913https://doi.org/10.1007/s00167-010-1258-2
        • Harris A.I.
        • Christen B.
        • Malcorps J.J.
        • O’Grady C.P.
        • Kopjar B.
        • Sensiba P.R.
        • et al.
        Midterm performance of a guided-motion Bicruciate-stabilized total knee system: Results from the international study of Over 2000 consecutive primary total knee arthroplasties.
        J Arthroplasty. 2019; 34: S201-S208
        • Harris A.I.
        • Luo T.D.
        • Lang J.E.
        • Kopjar B.
        Short-term safety and effectiveness of a second-generation motion-guided total knee system.
        Arthroplasty Today. 2018; 4: 240-243https://doi.org/10.1016/j.artd.2017.11.007
        • Barrack R.L.
        • Schrader T.
        • Bertot A.J.
        • Wolfe M.W.
        • Myers L.
        Component rotation and anterior knee pain after total knee arthroplasty.
        Clin Orthop Relat Res. 2001; 392: 46-55https://doi.org/10.1097/00003086-200111000-00006
        • Nicoll D.
        • Rowley D.I.
        Internal rotational error of the tibial component is a major cause of pain after total knee replacement.
        J Bone Joint Surg Br. 2010; 92: 1238-1244https://doi.org/10.1302/0301-620X.92B9.23516
        • Boldt J.G.
        • Stiehl J.B.
        • Hodler J.
        • Zanetti M.
        • Munzinger U.
        Femoral component rotation and arthrofibrosis following mobile-bearing total knee arthroplasty.
        Int Orthop. 2006; 30: 420-425https://doi.org/10.1007/s00264-006-0085-z
        • Fehring T.K.
        • Valadie A.L.
        Knee instability after total knee arthroplasty.
        Clin Orthop Relat Res. 1994; 299: 157-162https://doi.org/10.1097/00003086-199402000-00022
        • Abdelnasser M.K.
        • Elsherif M.E.
        • Bakr H.
        • Mahran M.
        • Othman M.H.M.
        • Khalifa Y.
        All types of component malrotation affect the early patient-reported outcome measures after total knee arthroplasty.
        Knee Surg Relat Res. 2019; 31: 5https://doi.org/10.1186/s43019-019-0006-2
        • Ueyama H.
        • Minoda Y.
        • Sugama R.
        • Ohta Y.
        • Yamamura K.
        • Nakamura S.
        • et al.
        Malrotation of the fixed-bearing posterior stabilized total knee prosthesis causes a postoperative rotational mismatch between the femur and tibia.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 3810-3820
        • Lützner J.
        • Kirschner S.
        • Günther K.P.
        • Harman M.K.
        Patients with no functional improvement after total knee arthroplasty show different kinematics.
        Int Orthop. 2012; 36: 1841-1847https://doi.org/10.1007/s00264-012-1584-8
        • Akagi M.
        • Oh M.
        • Nonaka T.
        • Tsujimoto H.
        • Asano T.
        • Hamanishi C.
        An anteroposterior axis of the tibia for total knee arthroplasty.
        Clin Orthop Relat Res. 2004; 420: 213-219https://doi.org/10.1097/00003086-200403000-00030
        • Berger R.A.
        • Rubash H.E.
        • Seel M.J.
        • Thompson W.H.
        • Crossett L.S.
        Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis.
        Clin Orthop Relat Res. 1993; 286: 40-47https://doi.org/10.1097/00003086-199301000-00008
        • Faul F.
        • Erdfelder E.
        • Lang A.G.
        • Buchner A.
        G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences.
        Behav Res Methods. 2007; 39: 175-191https://doi.org/10.3758/bf03193146
        • Youden W.J.
        Index for rating diagnostic tests.
        Cancer. 1950; 3: 32-35
        • Kosse N.M.
        • Heesterbeek P.J.C.
        • Defoort K.C.
        • Wymenga A.B.
        • van Hellemondt G.G.
        Maximal flexion and patient outcomes after TKA, using a bicruciate-stabilizing design.
        Arch Orthop Trauma Surg. 2020; 140: 1495-1501https://doi.org/10.1007/s00402-020-03491-7
        • Hommel H.
        • Wilke K.
        Good early results obtained with a guided-motion implant for total knee arthroplasty: A consecutive case series.
        Open Orthop J. 2017; 11: 51-56https://doi.org/10.2174/1874325001711010051
        • Zambianchi F.
        • Fiacchi F.
        • Lombari V.
        • Venturelli L.
        • Marcovigi A.
        • Giorgini A.
        • et al.
        Changes in total knee arthroplasty design affect in-vivo kinematics in a redesigned total knee system: A fluoroscopy study.
        Clin Biomech (Bristol, Avon). 2018; 54: 92-102
        • Kuwashima U.
        • Hamai S.
        • Okazaki K.
        • Ikebe S.
        • Higaki H.
        • Mizu-uchi H.
        • et al.
        Contact stress analysis of the anterior tibial post in bi-cruciate stabilized and mobile-bearing posterior stabilized total knee arthroplasty designs.
        J Mech Behav Biomed Mater. 2016; 60: 460-467
        • Kaneko T.
        • Kono N.
        • Mochizuki Y.
        • Hada M.
        • Toyoda S.
        • Musha Y.
        Bi-cruciate substituting total knee arthroplasty improved medio-lateral instability in mid-flexion range.
        J Orthop. 2017; 14: 201-206https://doi.org/10.1016/j.jor.2016.12.005
        • Inui H.
        • Taketomi S.
        • Yamagami R.
        • Shirakawa N.
        • Kawaguchi K.
        • Tanaka S.
        The relationship between soft-tissue balance and intraoperative kinematics of guided motion total knee arthroplasty.
        J Knee Surg. 2019; 32: 91-96https://doi.org/10.1055/s-0038-1636545
        • Iriuchishima T.
        • Ryu K.
        Bicruciate substituting total knee arthroplasty improves stair climbing ability when compared with cruciate-retain or posterior stabilizing total knee arthroplasty.
        Indian J Orthop. 2019; 53: 641-645https://doi.org/10.4103/ortho.IJOrtho_392_18
        • Kawaguchi K.
        • Inui H.
        • Yamagami R.
        • Kenichi K.
        • Sameshima S.
        • Kage T.
        • et al.
        A new technique for determining the rotational alignment of the tibial component during total knee arthroplasty.
        Knee. 2021; 29: 323-331https://doi.org/10.1016/j.knee.2021.02.006
        • Zhou C.
        • Peng Y.
        • An S.
        • Bedair H.
        • Li G.
        Does contemporary bicruciate retaining total knee arthroplasty restore the native knee kinematics? A descriptive literature review.
        Arch Orthop Trauma Surg. 2021; https://doi.org/10.1007/s00402-021-04116-3
        • Boese C.K.
        • Ebohon S.
        • Ries C.
        • Faoite D.D.
        Bi-cruciate retaining total knee arthroplasty: a systematic literature review of clinical outcomes.
        Arch Orthop Trauma Surg. 2021; 141: 293-304https://doi.org/10.1007/s00402-020-03622-0
        • Singh V.
        • Yeroushalmi D.
        • Christensen T.H.
        • Bieganowski T.
        • Tang A.
        • Schwarzkopf R.
        Early outcomes of a novel bicruciate-retaining knee system: a 2-year minimum retrospective cohort study.
        Arch Orthop Trauma Surg. 2022; https://doi.org/10.1007/s00402-022-04351-2