Comparison of biomechanical analysis of four different tibial tunnel fixations in a bovine model

Published:September 09, 2022DOI:



      To determine the ideal fixation technique for an ACL reconstruction with a hamstring graft, multiple studies have been undertaken to define the initial biomechanical properties of tibial fixation.


      The aim of this study was to compare the biomechanical properties of tibial fixation methods by creating single or hybrid systems.


      Bovine tibias and forefoot digital extensor tendons were prepared with four different tibial anterior cruciate ligament fixation methods and compared biomechanically. Fixation materials included polyethylene Ultrabraid high-strength sutures, Biosure interference screws (Smith and Nephew, Memphis, TN, USA), staples (Smith and Nephew, Richards Regular Fixation Staples without Spikes, Memphis, TN, USA), and knotless suture anchors (Multifix-S PEEK) (Smith and Nephew, Memphis, TN, USA). Four groups (n = 5 specimens) were established – group I: single fixation with interference screws; group II: single fixation with knotless anchors; group III: hybrid fixation with interference screws and staples; group IV: hybrid fixation with interference screws and knotless anchors. Each specimen underwent evaluations for cyclic displacement, cyclic stiffness, initial loading strength, ultimate failure load, pull-out displacement, and pull-out stiffness.


      All specimens completed cyclic loading and load-to-failure. The cyclic displacement in group II, which had a single fixation, indicated significantly greater elongation compared with the other groups (P = 0.002). The hybrid systems were more rigid than the single systems in terms of cyclic stiffness, and no statistically significant difference was observed between the hybrid systems (P = 0.461). Group IV was significantly superior in terms of the ultimate failure load (P = 0.004). No statistically significant differences were noted between the groups for pull-out displacement or pull-out stiffness.


      Single fixation with bioscrews as an in-tunnel tibia fixation method was as successful as hybrid systems. Multifix-S PEEK knotless suture anchors, which can be combined with bioscrews, can be a superior fixation alternative due to its flexibility and ultimate failure load values.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Knee
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Philipp K.
        • Anne F.
        • Dag W.
        • Robert C.
        • Georg N.D.
        • Klaus-Dieter S.
        • et al.
        Significant loss of ACL graft force with tibial-sided soft tissue ınterference screw fixation over 24 hours: A biomechanical study.
        Orthop J Sports Med. 2020; 8
        • Petre B.M.
        • Smith S.D.
        • Jansson K.S.
        • De Meijer P.P.
        • Hackettt T.R.
        • LaPrade R.F.
        • et al.
        Femoral cortical suspension devices for soft tissue ACL reconstruction.
        Am J Sports Med. 2012; 41: 416-422
        • Kousa P.
        • Järvinen T.L.N.
        • Vihavainen M.
        • Kannus P.
        • Järvinen M.
        The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site.
        Am J Sports Med. 2003; 31: 182-188
        • Brand Jr, J.C.
        • Pienkowski D.
        • Steenlage E.
        • Hamilton D.
        • Johnson D.L.
        • Caborn D.N.
        Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque.
        Am J Sports Med. 2000; 28: 705-710
        • Fogel H.
        • Golz A.
        • Burleson A.
        • Muriuki M.
        • Havey R.
        • Carandang G.
        • et al.
        A biomechanical analysis of tibial fixation methods in hamstring-graft anterior cruciate ligament reconstruction.
        Iowa Orthop J. 2019; 39: 141-147
        • Nagarkatti D.G.
        • McKeon B.P.
        • Donahue B.S.
        • Fulkerson J.P.
        Mechanical evaluation of a soft tissue screw in free tendon anterior cruciate ligament graft fixation.
        Am J Sports Med. 2001; 29: 67-71
        • Robert H.
        • Bowen M.
        • Odry G.
        • Collette M.
        • Cassard X.
        • Lanternier H.
        • et al.
        A comparison of four tibial-fixation systems in hamstring-graft anterior ligament reconstruction.
        Eur J Orthop Surg Traumatol. 2015; 25: 339-347
        • Magen H.E.
        • Howell S.M.
        • Hull M.L.
        Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts.
        Am J Sports Med. 1999; 27: 35-43
        • Tetsumura S.
        • Fujita A.
        • Nakajima M.
        • Abe M.
        Biomechanical comparison of different fixation methods on the tibial side in anterior cruciate ligament reconstruction: A biomechanical study in porcine tibial bone.
        J Orthop Sci. 2006; 11: 278-282
        • Steiner M.E.
        • Hecker A.T.
        • Brown C.H.
        • Hayes W.C.
        Anterior cruciate ligament graft fixation: Comparison of hamstring and patellar tendon grafts.
        Am J Sports Med. 1994; 22: 240-247
        • Williams G.N.
        • Snyder-mackler LYNN
        • Barrance P.J.
        • Axe M.J.
        • Buchanan T.S.
        Muscle and tendon morphology after reconstruction of the anterior cruciate ligament with autologous semitendinosus-gracilis graft.
        J Bone Joint Surg Am. 2004; 86: 1936-1946
        • Charlick D.A.
        • Caborn D.N.
        Alternative soft-tissue graft preparation technique for cruciate ligament reconstruction.
        Arthroscopy. 2000; 16: E20
        • Walsh M.P.
        • Wijdicks C.A.
        • Parker J.B.
        • Hapa O.
        • LaPrade R.F.
        A comparison between a retrograde interference screw, suture button, and combined fixation on the tibial side in an all-inside anterior cruciate ligament reconstruction: A biomechanical study in a porcine model.
        Am J Sports Med. 2009; 37: 160-167
        • Garcés G.L.
        • Martel O.
        • Yánez A.
        • Cuadrado A.
        Does thread shape affect the fixation strength of the bioabsorbable interference screws for anterior cruciate ligament reconstructions?.
        A biomechanical study BMC Musculoskelet Disord. 2019; 20: 60
        • Markolf K.L.
        • Gorek J.F.
        • Kabo J.M.
        • Shapiro M.S.
        Direct measurement of resultant forces in the anterior cruciate ligament - an invitro study performed with a new experimental-technique.
        J Bone Joint Surg Am. 1990; 72: 557-567
        • Noyes F.R.
        • Butler D.L.
        • Grood E.S.
        • Zernicke R.F.
        • Hefzy M.S.
        Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
        J Bone Joint Surg Am. 1984; 66: 344-352
        • Frank C.B.
        • Jackson D.W.
        The science of reconstruction of the anterior cruciate ligament.
        J Bone Joint Surg. 1997; 79A: 1556-1576
        • Mayr R.
        • Heinrichs C.H.
        • Eichinger M.
        • Coppola C.
        • Schmoelz W.
        • Attal R.
        Biomechanical comparison of 2 anterior cruciate ligament graft preparation techniques for tibial fixation: adjustable-length loop cortical button or interference screw.
        Am J Sports Med. 2015; 43: 1380-1385
        • Howell S.M.
        • Taylor M.A.
        Brace-free rehabilitation, with early return to activity, for knees reconstructed with a double-looped semitendinosus and gracilis graft.
        J Bone Joint Surg Am. 1996; 78: 814-825
        • Khan R.
        • Konyves A.
        • Rama K.R.
        • Thomas R.
        • Amis A.A.
        RSA can measure ACL graft stretching and migration: development of a new method.
        Clin Orthop Relat Res. 2006; 448: 139-145
        • Nakano H.
        • Yasuda K.
        • Tohyama H.
        • Yamanaka M.
        • Wada T.
        • Kaneda K.
        Interference screw fixation of doubled flexor tendon graft in anterior cruciate ligament reconstruction: biomechanical evaluation with cyclic elongation.
        Clin Biomech (Bristol, Avon). 2000; 15: 188-195
        • Scheffler S.U.
        • Südkamp N.P.
        • Göckenjan A.
        • Hoffmann R.F.G.
        • Weiler A.
        Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading.
        Arthroscopy. 2002; 18: 304-315
        • Emond C.E.
        • Woelber E.B.
        • Kurd S.K.
        • Ciccotti M.G.
        • Cohen S.B.
        A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws: A meta-analysis.
        J Bone Joint Surg Am. 2011; 93: 572-580
        • Woodmass J.M.
        • Matthewson G.
        • Ono Y.
        • Bois A.J.
        • Boorman R.S.
        • Lo I.K.
        • et al.
        Suture locking of isolated internal locking knotless suture anchors is not affected by bone quality.
        Open Access J Sports Med. 2015; 6: 201-208
        • Smith P.A.
        • DeBerardino T.M.
        Tibial fixation properties of a continuous-loop ACL hamstring grafts construct with suspensory fixation in porcine bone.
        J Knee Surg. 2015; 28: 506-512
        • Barber F.A.
        • Herbert M.A.
        Cyclic loading biomechanical analysis of the pullout strengths of rotator cuff and glenoid anchors: 2013 update.
        Arthroscopy. 2013; 29: 832-844
        • Alan Barber F.
        • Herbert M.A.
        • Hapa O.
        • Rapley J.H.
        • Barber C.A.K.
        • Bynum J.A.
        • et al.
        Biomechanical analysis of pullout strengths of rotator cuff and glenoid anchors: 2011 update.
        Arthroscopy. 2011; 27: 895-905
        • Pietschmann M.F.
        • Froehlich V.
        • Ficklscherer A.
        • Wegener B.
        • Jansson V.
        • Müller P.E.
        Biomechanical testing of a new knotless suture anchor compared with established anchors for rotator cuff repair.
        J Shoulder Elbow Surg. 2008; 17: 642-646
        • Brown B.S.
        • Cooper A.D.
        • McIff T.E.
        • Key V.H.
        • Toby E.B.
        Initial fixation and cyclic loading stability of knotless suture anchors for rotator cuff repair.
        J Shoulder Elbow Surg. 2008; 17: 313-318
        • Coleridge S.D.
        • Amis A.A.
        A comparison of five tibial fixation system in hamstring-graft ACL reconstruction.
        Knee Surg Sports Traumatol Arthosc. 2004; 12: 391-397
        • Fabbriciani C.
        • Mulas P.D.
        • Ziranu F.
        • Deriu L.
        • Zarelli D.
        • Milano G.
        Mechanical analysis of fixation methods for anterior cruciate ligament reconstruction with hamstring tendon graft. An experimental study in sheep knees.
        Knee. 2005; 12: 135-138
        • Giurea M.
        • Zorilla P.
        • Amis A.A.
        • Aichroth P.
        Aichroth P Comparative pullout and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction.
        Am J Sports Med. 1999; 27: 621-625
        • Hill P.F.
        • Russell V.J.
        • Salmon L.J.
        • Pinczewski L.A.
        The influence of supplementary tibial fixation on laxity measurements after anterior cruciate ligament reconstruction with hamstring tendons in female patients.
        Am J Sports Med. 2005; 33: 94-101
        • Teo W.W.
        • Yeoh C.S.
        • Wee T.H.
        Tibial fixation in anterior cruciate ligament reconstruction.
        J Orthop Surg (Hong Kong). 2017; 25 (2309499017699743)
        • Weiler A.
        • Windhagen H.J.
        • Raschke M.J.
        • Laumeyer A.
        • Hoffmann R.F.G.
        Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws.
        Am J Sports Med. 1998; 26: 119-128