Plantaris tendon is valuable graft for the medial patellofemoral ligament reconstruction: A biomechanical study

Published:September 10, 2022DOI:


      • MPFL reconstruction is a standard treatment for patients with patellar instability.
      • Two-strand plantaris tendon has biomechanical properties needed to be MPFL graft.
      • Two-strand plantaris and gracilis tendon biomechanical properties differ significantly.



      Medial patellofemoral ligament (MPFL) reconstruction is a standard treatment option for selected patients with patellar instability. Although frequently performed, the optimal graft source for the procedure has not yet been established. This study aimed to determine whether a two-strand plantaris tendon construct possesses the biomechanical properties needed to act as an MPFL reconstruction graft.


      Thirty paired plantaris and gracilis tendons were harvested from 15 cadavers, mean age at death of 42.7 years. All specimens were frozen and maintained at −20 °C until biomechanical testing. Prior to mechanical testing, specimens were thawed at room temperature. The two-strand plantaris tendon and two-strand gracilis tendon constructs were created and secured in a uniaxial tensile testing machine in a triangular-shaped mode. Biomechanical properties for tensile testing to failure were determined using validated method. Results obtained were compared with the previously published data on native MPFL biomechanical properties.


      The mean maximal force was 220.3 ± 108.1 N and 448.1 ± 117 N for the two-strand plantaris tendon construct and two-strand gracilis tendon construct, respectively. Significant differences were observed between all biomechanical properties of two-strand plantaris tendon and two-strand gracilis tendon constructs. The mean maximal force of a two-strand plantaris tendon construct and a two-strand gracilis tendon construct were greater than the mean maximal force of the native MPFL reported in all previous studies.


      This study suggests that, due to its biomechanical properties, the two-strand plantaris tendon graft is suitable as a graft for MPFL reconstruction.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Knee
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lorbach O.
        • Zumbansen N.
        • Kieb M.
        • Efe T.
        • Pizanis A.
        • Kohn D.
        • et al.
        Medial patellofemoral ligament reconstruction: impact of knee flexion angle during graft fixation on dynamic patellofemoral contact pressure – A biomechanical study.
        Arthroscopy. 2018; 34: 1072-1082
        • Saper M.G.
        • Meijer K.
        • Winnier S.
        • Popovich Jr, J.
        • Andrews J.R.
        • Roth C.
        Biomechanical evaluation of classic solid and all-soft suture anchors for medial patellofemoral ligament reconstruction.
        Am J Sports Med. 2017; 45: 1622-1626
        • Johnston T.R.
        • Liles J.
        • Riboh J.
        Anchor-based femoral fixation for physeal-sparing medial patellofemoral ligament reconstruction: A time-zero biomechanical comparison with tenodesis screw fixation.
        Am J Sports Med. 2020; 48: 3021-3027
        • Raoulis V.A.
        • Hantes M.E.
        • Fyllos A.
        • Chiotelli M.D.
        • Kermanidis A.T.
        • Malahias M.A.
        • et al.
        Biomechanical comparison of two medial patellofemoral ligament reconstruction techniques: Quadriceps tendon fixation versus single-tunnel patella fixation with gracilis autograft did not differ in load to failure and stiffness.
        Knee. 2021; 33: 169-175
        • Raoulis V.A.
        • Zibis A.
        • Chiotelli M.D.
        • Kermanidis A.T.
        • Banios K.
        • Schuster P.
        • et al.
        Biomechanical evaluation of three patellar fixation techniques for MPFL reconstruction: Load to failure did not differ but interference screw stabilization was stiffer than suture anchor and suture-knot fixation.
        Knee Surg Sports Traumatol Arthrosc. 2021; 29: 3697-3705
        • Zhao X.
        • Zhang H.
        Biomechanical comparison of 2 patellar fixation techniques in medial patellofemoral ligament reconstruction: Transosseous sutures vs suture anchors. Orthop.
        J Sports Med. 2021; 9 (23259671211041404)
        • Weinberger J.M.
        • Fabricant P.D.
        • Taylor S.A.
        • Mei J.Y.
        • Jones K.J.
        Influence of graft source and configuration on revision rate and patient-reported outcomes after MPFL reconstruction: A systematic review and meta-analysis.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 2511-2519
        • Schepsis A.A.
        • Rogers A.J.
        Medial patellofemoral ligament reconstruction: indications and technique.
        Sports Med Arthrosc Rev. 2012; 20: 162-170
        • McNeilan R.J.
        • Everhart J.S.
        • Mescher P.K.
        • Abouljoud M.
        • Magnussen R.A.
        • Flanigan D.C.
        Graft choice in isolated medial patellofemoral ligament reconstruction: A systematic review with meta-analysis of rates of recurrent instability and patient-reported outcomes for autograft, allograft, and synthetic options.
        Arthroscopy. 2018; 34: 1340-1354
        • Gfoller P.
        • Hoser C.
        • Runer A.
        • Abermann E.
        • Wierer G.
        • Fink C.
        Medial patellofemoral ligament (MPFL) reconstruction using quadriceps tendon autograft provides good clinical, functional and patient-reported outcome measurements (PROM): A 2-year prospective study.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 2426-2432
        • Arendt E.A.
        Anatomy and biomechanics of the patellar ligaments.
        Tecniche Chirurgiche in Ortopedia E Traumatologia. 2007; 5: 13-18
        • Smeets K.
        • Bellemans J.
        • Scheys L.
        • Eijnde B.O.
        • Slane J.
        • Claes S.
        Mechanical analysis of extra-articular knee ligaments. Part two: tendon grafts used for knee ligament reconstruction.
        Knee. 2017; 24: 957-964
        • Zaffagnini S.
        • Marcheggiani Muccioli G.M.
        • Grassi A.
        • Bonanzinga T.
        • Marcacci M.
        Minimally invasive medial patellofemoral ligament reconstruction with fascia lata allograft: Surgical technique.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 2426-2430
        • Nordin J.S.
        • Olsson O.
        • Lunsjo K.
        The gracilis tendon autograft is a safe choice for orthopedic reconstructive procedures: a consecutive case series studying the effects of tendon harvesting.
        BMC Musculoskelet Disord. 2019; 20: 138
        • Silver R.L.
        • de la Garza J.
        • Rang M.
        The myth of muscle balance. A study of relative strengths and excursions of normal muscles about the foot and ankle.
        J Bone Joint Surg Br. 1985; 67: 432-437
        • Spina A.A.
        The plantaris muscle: anatomy, injury, imaging, and treatment.
        J Can Chiropr Assoc. 2007; 51: 158-165
        • Vlaic J.
        • Josipovic M.
        • Bohacek I.
        • Jelic M.
        The plantaris muscle: Too important to be forgotten. A review of evolution, anatomy, clinical implications and biomechanical properties.
        J Sports Med Phys Fitness. 2019; 59: 839-845
        • Walker L.B.
        • Harris E.H.
        • Benedict J.V.
        Stress–strain relationship in human cadaveric plantaris tendon: A preliminary study.
        Med Electron Biol Eng. 1964; 2: 31-38
        • Zarzycki W.
        • Mazurkiewicz S.
        • Wisniewski P.
        Research on strength of the grafts that are used in anterior cruciate ligament reconstruction.
        Pol Orthop Traumatol. 1999; 64: 293-302
        • Bohnsack M.
        • Surie B.
        • Kirsch I.L.
        • Wulker N.
        Biomechanical properties of commonly used autogenous transplants in the surgical treatment of chronic lateral ankle instability.
        Foot Ankle Int. 2002; 23: 661-664
        • Jackson 3rd, J.B.
        • Philippi M.T.
        • Kolz C.W.
        • Suter T.
        • Henninger H.B.
        Characterization of plantaris tendon constructs for ankle ligament reconstruction.
        Foot Ankle Int. 2014; 35: 922-928
        • Atkinson P.
        • Atkinson T.
        • Huang C.
        • Doane R.
        A comparison of the mechanical and dimensional properties of the human medial and lateral patellofemoral ligaments.
        Trans Orthop Res Soc. 2000; 46: 0776
        • Mountney J.
        • Senavongse W.
        • Amis A.A.
        • Thomas N.P.
        Tensile strength of the medial patellofemoral ligament before and after repair or reconstruction.
        J Bone Joint Surg Br. 2005; 87: 36-40
        • He W.
        • Yang Y.
        • Liu M.
        • Wang A.
        • Liu Y.
        Reconstruction of the medial patellofemoral ligament using hamstring tendon graft with different methods: A biomechanical study.
        Chinese Med Sci J. 2013; 28: 201-205
        • Herbort M.
        • Hoser C.
        • Domnick C.
        • Raschke M.J.
        • Lenschow S.
        • Weimann A.
        • et al.
        MPFL reconstruction using a quadriceps tendon graft, part 1: Biomechanical properties of quadriceps tendon MPFL reconstruction in comparison to the intact MPFL.
        A human cadaveric study Knee. 2014; 21: 1169-1174
        • Criscenti G.
        • De Maria C.
        • Sebastiani E.
        • Tei M.
        • Placella G.
        • Speziali A.
        • et al.
        Material and structural tensile properties of the human medial patello-femoral ligament.
        J Mech Behav Biomed Mater. 2016; 54: 141-148
        • Hinckel B.B.
        • Gobbi R.G.
        • Demange M.K.
        • Pereira C.A.M.
        • Pécora J.R.
        • Natalino R.J.M.
        • et al.
        Medial patellofemoral ligament, medial patellotibial ligament, and medial patellomeniscal ligament: anatomic, histologic, radiographic, and biomechanical study.
        Arthroscopy. 2017; 33: 1862-1873
        • LaPrade M.D.
        • Kallenbach S.L.
        • Aman Z.S.
        • Moatshe G.
        • Storaci H.W.
        • Turnbull T.L.
        • et al.
        Biomechanical evaluation of the medial stabilizers of the patella.
        Am J Sports Med. 2018; 46: 1575-1582
        • Huber C.
        • Zhang Q.
        • Taylor W.R.
        • Amis A.A.
        • Smith C.
        • Hosseini Nasab S.H.
        Properties and function of the medial patellofemoral ligament: A systematic review.
        Am J Sports Med. 2020; 48: 754-766
        • Pagenstert G.I.
        • Hintermann B.
        Proximal mini-invasive grafting of plantaris tendon.
        in: Easley M.E. Wiesel S.W. Operative Techniques in Foot and Ankle Surgery. Lippincott Williams & Wilkins, a Wolters Kluwer business, Philadelphia2011: 974-977
        • Pearsall A.W.
        • Hollis J.M.
        • Russell Jr, G.V.
        • Scheer Z.
        A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee.
        Arthroscopy. 2003; 19: 1091-1096
        • Pichler W.
        • Tesch N.P.
        • Schwantzer G.
        • Fronhofer G.
        • Boldin C.
        • Hausleitner L.
        • et al.
        Differences in length and cross-section of semitendinosus and gracilis tendons and their effect on anterior cruciate ligament reconstruction: A cadaver study.
        J Bone Joint Surg Br. 2008; 90: 516-519
      1. ISO 2307: 2010 Fibre ropes – Determination of certain physical and mechanical properties.

        • Placella G.
        • Tei M.
        • Sebastiani E.
        • Speziali A.
        • Antinolfi P.
        • Delcogliano M.
        • et al.
        Anatomy of the medial patello-femoral ligament: A systematic review of the last 20 years literature.
        Musculoskelet Surg. 2015; 99: 93-103
      2. Eaton JW, Bateman D, Hauberg S, Wehbring R. GNU Octave version 5.1.0 manual: A high-level interactive language for numerical computations. Available at:

        • Josipović M.
        • Vlaić J.
        • Serdar J.
        • Šimunović M.
        • Nizić D.
        • Schauperl Z.
        • et al.
        Plantaris tendon: a novel graft for anterolateral ligament reconstruction and additional reinforcement for anterior cruciate ligament autografts in combined reconstructive procedures.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 2604-2608
        • Schöttle P.B.
        • Hensler D.
        • Imhoff A.B.
        Anatomical double-bundle MPFL reconstruction with an aperture fixation.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 147-151
        • Woo S.L.
        • Hollis J.M.
        • Adams D.J.
        • Lyon R.M.
        • Takai S.
        Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation.
        Am J Sports Med. 1991; 19: 217-225
        • Jakubietz M.G.
        • Jakubietz D.F.
        • Gruenert J.G.
        • Zahn R.
        • Meffert R.H.
        • Jakubietz R.G.
        Adequacy of palmaris longus and plantaris tendons for tendon grafting.
        J Hand Surg Am. 2011; 36: 695-698
        • Janssen R.P.
        • van der Velden M.J.
        • van den Besselaar M.
        • Reijman M.
        Prediction of length and diameter of hamstring tendon autografts for knee ligament surgery in Caucasians.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 1199-1204