Advertisement
Research Article| Volume 40, P16-23, January 2023

Download started.

Ok

Unloader bracing in osteoarthritis of the knee – Is there a direct effect on the damaged cartilage?

  • S. Beck
    Correspondence
    Corresponding authors at: Sportsclinic Hellersen, Paulmannshoeher Strasse 17, 58515 Luedenscheid, Germany (S. Beck) and Medical School Essen, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany (J. Haubold).
    Affiliations
    Sportsclinic Hellersen, Paulmannshoeher Strasse 17, 58515 Luedenscheid, Germany

    Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
    Search for articles by this author
  • F. Dittrich
    Affiliations
    Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany

    Gelenkzentrum Bergisch Land, Freiheitsstrasse 203, 42853 Remscheid, Germany
    Search for articles by this author
  • A. Busch
    Affiliations
    Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany

    Department of Orthopedics, Trauma and Reconstructive Surgery, St. Marien Hospital Muelheim, Contilia Gruppe, Kaiserstrasse 50, 45468 Muelheim an der Ruhr, Germany
    Search for articles by this author
  • M. Jäger
    Affiliations
    Department of Orthopedics, Trauma and Reconstructive Surgery, St. Marien Hospital Muelheim, Contilia Gruppe, Kaiserstrasse 50, 45468 Muelheim an der Ruhr, Germany

    Chair of Orthopedics and Trauma Surgery, University of Duisburg-Essen, Essen, Germany
    Search for articles by this author
  • J.M. Theysohn
    Affiliations
    Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
    Search for articles by this author
  • A. Lazik-Palm
    Affiliations
    Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
    Search for articles by this author
  • J. Haubold
    Correspondence
    Corresponding authors at: Sportsclinic Hellersen, Paulmannshoeher Strasse 17, 58515 Luedenscheid, Germany (S. Beck) and Medical School Essen, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany (J. Haubold).
    Affiliations
    Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
    Search for articles by this author
Published:November 17, 2022DOI:https://doi.org/10.1016/j.knee.2022.11.003

      Highlights

      • Unloader bracing improves knee function in unicompartmental osteoarthritis of the knee demonstrating an immediate and late effect developing over time.
      • Bracing improves biochemical properties of damaged cartilage in terms of increasing collagen and proteoglycan levels or a decreasing edema of the damaged cartilage.

      Abstract

      Background

      Unloading knee braces represent a conservative treatment option for non-pharmalogical management of unicompartmental osteoarthritis of the knee. Though there is consensus on the clinical effectiveness of unloading, the effect mechanism of bracing remains part of a debate. Our study was designed to assess the effect of unloader bracing on damaged cartilage via MRI cartilage mappings.

      Methods

      Fourteen patients (7 female, 7 male, mean age 43.1 ± 9.4 years) with unicompartmental cartilage wear in knees with varus or valgus malalignment were enrolled. Clinical scores, radiographs and MR-graphic properties (T2/T2* mapping, T1 Delayed Gadolinium Enhanced MRI of the cartilage (dGEMRIC) mapping, high-resolution PDw sequences) of knee cartilage were recorded before and three months after brace use.

      Results

      Bracing the knees for a mean of 14.4 ± 2.0 weeks (range 11 to 18 weeks) resulted in significant pain reduction (VAS changed from 5.9 ± 2.0 to 2.0 ± 1.3, p < 0.001) and improvement in knee function (KOOS increased from 42.1 ± 22.7 to 64.8 ± 18.7, p < 0.001). In the affected cartilage regions T2 relaxation times significantly decreased from 56.1 ± 11.4 ms to 46.5 ± 11.2 ms (p < 0.05). No changes in T1-dGEMRIC and T2* relaxation times, thickness or the extent of the damaged cartilage area could be detected.

      Conclusions

      Our results suggest, that unloader bracing improves the biochemical properties of the damaged cartilage by increasing collagen and proteoglycan concentration as well as decreasing the cartilage edema.

      Keywords

      Abbreviations:

      GAG (glycosaminoglycanes), VAS (visual analogue scale), KOOS (Knee Injury and Osteoarthritis Outcome Score), MRI (magnetic resonance imaging), dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Knee
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gomoll A.H.
        • Angele P.
        • Condello V.
        • Madonna V.
        • Madry H.
        • Randelli P.
        • et al.
        Load distribution in early osteoarthritis.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 1815-1825https://doi.org/10.1007/s00167-016-4123-0
        • Tanamas S.
        • Hanna F.S.
        • Cicuttini F.M.
        • Wluka A.E.
        • Berry P.
        • Urquhart D.M.
        Does knee malalignment increase the risk of development and progression of knee osteoarthritis?.
        A systematic review Arthritis Rheum. 2009; 61: 459-467https://doi.org/10.1002/art.24336
        • Yang N.H.
        • Nayeb-Hashemi H.
        • Canavan P.K.
        • Vaziri A.
        Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait.
        J Orthop Res. 2010; 28: 1539-1547https://doi.org/10.1002/jor.21174
        • Self B.P.
        • Greenwald R.M.
        • Pflaster D.S.
        A biomechanical analysis of a medial unloading brace for osteoarthritis in the knee.
        Arthritis Care Res. 2000; 13: 191-197
        • Jung W.H.
        • Takeuchi R.
        • Chun C.W.
        • Lee J.S.
        • Ha J.H.
        • Kim J.H.
        • et al.
        Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy.
        Arthroscopy. 2014; 30: 72-79https://doi.org/10.1016/j.arthro.2013.10.008
        • Koshino T.
        • Wada S.
        • Ara Y.
        • Saito T.
        Regeneration of degenerated articular cartilage after high tibial valgus osteotomy for medial compartmental osteoarthritis of the knee.
        Knee. 2003; 10: 229-236https://doi.org/10.1016/s0968-0160(03)00005-x
        • Odenbring S.
        • Egund N.
        • Lindstrand A.
        • Lohmander L.S.
        • Willen H.
        Cartilage regeneration after proximal tibial osteotomy for medial gonarthrosis. An arthroscopic, roentgenographic, and histologic study.
        Clin Orthop Relat Res. 1992; 277: 210-216
        • Jordan K.M.
        • Arden N.K.
        • Doherty M.
        • Bannwarth B.
        • Bijlsma J.W.
        • Dieppe P.
        • et al.
        EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT).
        Ann Rheum Dis. 2003; 62: 1145-1155
        • Divine J.G.
        • Hewett T.E.
        Valgus bracing for degenerative knee osteoarthritis: relieving pain, improving gait, and increasing activity.
        Phys Sportsmed. 2005; 33: 40-46https://doi.org/10.3810/psm.2005.02.48
        • Haladik J.A.
        • Vasileff W.K.
        • Peltz C.D.
        • Lock T.R.
        • Bey M.J.
        Bracing improves clinical outcomes but does not affect the medial knee joint space in osteoarthritic patients during gait.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 2715-2720https://doi.org/10.1007/s00167-013-2596-7
        • Pagani C.H.
        • Bohle C.
        • Potthast W.
        • Bruggemann G.P.
        Short-term effects of a dedicated knee orthosis on knee adduction moment, pain, and function in patients with osteoarthritis.
        Arch Phys Med Rehabil. 2010; 91: 1936-1941https://doi.org/10.1016/j.apmr.2010.09.003
        • Ramsey D.K.
        • Briem K.
        • Axe M.J.
        • Snyder-Mackler L.
        A mechanical theory for the effectiveness of bracing for medial compartment osteoarthritis of the knee.
        J Bone Joint Surg Am. 2007; 89: 2398-2407https://doi.org/10.2106/JBJS.F.01136
        • Johnson A.J.
        • Starr R.
        • Kapadia B.H.
        • Bhave A.
        • Mont M.A.
        Gait and clinical improvements with a novel knee brace for knee OA.
        J Knee Surg. 2013; 26: 173-178https://doi.org/10.1055/s-0032-1327452
        • Orishimo K.F.
        • Kremenic I.J.
        • Lee S.J.
        • McHugh M.P.
        • Nicholas S.J.
        Is valgus unloader bracing effective in normally aligned individuals: implications for post-surgical protocols following cartilage restoration procedures.
        Knee Surg Sports Traumatol Arthrosc. 2013; 21: 2661-2666https://doi.org/10.1007/s00167-012-2174-4
        • Pollo F.E.
        • Otis J.C.
        • Backus S.I.
        • Warren R.F.
        • Wickiewicz T.L.
        Reduction of medial compartment loads with valgus bracing of the osteoarthritic knee.
        Am J Sports Med. 2002; 30: 414-421https://doi.org/10.1177/03635465020300031801
        • Anderson I.A.
        • MacDiarmid A.A.
        • Lance Harris M.
        • Mark Gillies R.
        • Phelps R.
        • Walsh W.R.
        A novel method for measuring medial compartment pressures within the knee joint in-vivo.
        J Biomech. 2003; 36: 1391-1395
        • Kutzner I.
        • Kuther S.
        • Heinlein B.
        • Dymke J.
        • Bender A.
        • Halder A.M.
        • et al.
        The effect of valgus braces on medial compartment load of the knee joint - in vivo load measurements in three subjects.
        J Biomech. 2011; 44: 1354-1360https://doi.org/10.1016/j.jbiomech.2011.01.014
        • Komistek R.D.
        • Dennis D.A.
        • Northcut E.J.
        • Wood A.
        • Parker A.W.
        • Traina S.M.
        An in vivo analysis of the effectiveness of the osteoarthritic knee brace during heel-strike of gait.
        J Arthroplasty. 1999; 14: 738-742
        • Arazpour M.
        • Ahmadi Bani M.
        • Hutchins S.W.
        • Jones R.K.
        • Habibi B.M.
        Frontal plane corrective ability of a new unloader orthosis for medial compartment of the knee.
        Prosthet Orthot Int. 2013; 37: 481-488https://doi.org/10.1177/0309364613478964
        • Finger S.
        • Paulos L.E.
        Clinical and biomechanical evaluation of the unloading brace.
        J Knee Surg. 2002; 15 (discussion 9): 155-158
        • Barnes C.L.
        • Cawley P.W.
        • Hederman B.
        Effect of CounterForce brace on symptomatic relief in a group of patients with symptomatic unicompartmental osteoarthritis: a prospective 2-year investigation.
        Am J Orthop (Belle Mead NJ). 2002; 31: 396-401
        • Davidson P.L.
        • Sanderson D.J.
        • Loomer R.L.
        Kinematics of valgus bracing for medial gonarthrosis: technical report.
        Clin Biomech (Bristol, Avon). 1998; 13: 414-419
        • Nissi M.J.
        • Toyras J.
        • Laasanen M.S.
        • Rieppo J.
        • Saarakkala S.
        • Lappalainen R.
        • et al.
        Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage.
        J Orthop Res. 2004; 22: 557-564https://doi.org/10.1016/j.orthres.2003.09.008
        • Watrin-Pinzano A.
        • Ruaud J.P.
        • Cheli Y.
        • Gonord P.
        • Grossin L.
        • Gillet P.
        • et al.
        T2 mapping: an efficient MR quantitative technique to evaluate spontaneous cartilage repair in rat patella.
        Osteoarthritis Cartilage. 2004; 12: 191-200https://doi.org/10.1016/j.joca.2003.10.010
        • Burstein D.
        • Gray M.L.
        Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis?.
        Osteoarthritis Cartilage. 2006; 14: 1087-1090https://doi.org/10.1016/j.joca.2006.07.001
        • Mosher T.J.
        • Dardzinski B.J.
        Cartilage MRI T2 relaxation time mapping: overview and applications.
        Semin Musculoskelet Radiol. 2004; 8: 355-368https://doi.org/10.1055/s-2004-861764
        • Mosher T.J.
        • Liu Y.
        • Torok C.M.
        Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running.
        Osteoarthritis Cartilage. 2010; 18: 358-364https://doi.org/10.1016/j.joca.2009.11.011
        • Banjar M.
        • Horiuchi S.
        • Gedeon D.N.
        • Yoshioka H.
        Review of Quantitative Knee Articular Cartilage MR Imaging.
        Magn Reson Med Sci. 2022; 21: 29-40https://doi.org/10.2463/mrms.rev.2021-0052
        • Burstein D.
        • Velyvis J.
        • Scott K.T.
        • Stock K.W.
        • Kim Y.J.
        • Jaramillo D.
        • et al.
        Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage.
        Magn Reson Med. 2001; 45: 36-41https://doi.org/10.1002/1522-2594(200101)45:1<36::aid-mrm1006>3.0.co;2-w
        • Choi J.A.
        • Gold G.E.
        MR imaging of articular cartilage physiology.
        Magn Reson Imaging Clin N Am. 2011; 19: 249-282https://doi.org/10.1016/j.mric.2011.02.010
        • Outerbridge R.E.
        The etiology of chondromalacia patellae.
        Clin Orthop Relat Res. 1961; 2001: 5-8https://doi.org/10.1097/00003086-200108000-00002
      1. Nozaki T, Rafijah G, Yang L, Ueno T, Horiuchi S, Hitt D, et al. High-resolution 3 T MRI of traumatic and degenerative triangular fibrocartilage complex (TFCC) abnormalities using Palmer and Outerbridge classifications. Clin Radiol 2017;72(10):904 e1- e10. https://doi.org/10.1016/j.crad.2017.04.011.

        • Zheng K.
        • Scholes C.J.
        • Chen J.
        • Parker D.
        • Li Q.
        Multiobjective optimization of cartilage stress for non-invasive, patient-specific recommendations of high tibial osteotomy correction angle - a novel method to investigate alignment correction.
        Med Eng Phys. 2017; 42: 26-34https://doi.org/10.1016/j.medengphy.2016.11.013
        • Besselink N.J.
        • Vincken K.L.
        • Bartels L.W.
        • van Heerwaarden R.J.
        • Concepcion A.N.
        • Marijnissen A.C.A.
        • et al.
        Cartilage Quality (dGEMRIC Index) Following Knee Joint Distraction or High Tibial Osteotomy.
        Cartilage. 2020; 11: 19-31https://doi.org/10.1177/1947603518777578
        • Soellner S.T.
        • Goldmann A.
        • Muelheims D.
        • Welsch G.H.
        • Pachowsky M.L.
        Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee.
        Osteoarthritis Cartilage. 2017; 25: 1841-1849https://doi.org/10.1016/j.joca.2017.07.021
        • Lazik A.
        • Korsmeier K.
        • Classen T.
        • Jager M.
        • Kamminga M.
        • Kraff O.
        • et al.
        3 Tesla high-resolution and delayed gadolinium enhanced MR imaging of cartilage (dGEMRIC) after autologous chondrocyte transplantation in the hip.
        J Magn Reson Imaging. 2015; 42: 624-633https://doi.org/10.1002/jmri.24821
      2. Agency EM. EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans Recommendations conclude EMA’s scientific review of gadolinium deposition in brain and other tissues. EMA/457616/2017 ed.; 2017.

        • Schutz U.H.
        • Ellermann J.
        • Schoss D.
        • Wiedelbach H.
        • Beer M.
        • Billich C.
        Biochemical cartilage alteration and unexpected signal recovery in T2* mapping observed in ankle joints with mobile MRI during a transcontinental multistage footrace over 4486 km.
        Osteoarthritis Cartilage. 2014; 22: 1840-1850https://doi.org/10.1016/j.joca.2014.08.001
        • Rubenstein J.D.
        • Kim J.K.
        • Henkelman R.M.
        Effects of compression and recovery on bovine articular cartilage: appearance on MR images.
        Radiology. 1996; 201: 843-850https://doi.org/10.1148/radiology.201.3.8939241