Advertisement
Research Article| Volume 40, P143-151, January 2023

Download started.

Ok

High initial graft tension is a post-operative risk factor for high UTE T2* value of the graft 6 months after anterior cruciate ligament reconstruction

Published:November 23, 2022DOI:https://doi.org/10.1016/j.knee.2022.11.015

      Highlights

      • Graft ligamentization was evaluated by UTE-T2* 6 months postoperatively.
      • Higher graft tension was an independent risk factor of incomplete ligamentization.
      • Lower initial graft tension was related to lower UTE-T2* value of the graft.

      Abstract

      Background

      To evaluate the risk factor of “ligamentization” using the ultrashort echo time (UTE)-T2* imaging.

      Methods

      Fifty-nine patients (23 males and 36 females, age of 21.9 ± 10.6 years old) who underwent anterior cruciate ligament (ACL) reconstruction with hamstring tendon were evaluated. The UTE T2* values of the reconstructed ACL at 6 months postoperatively were calculated. Circular regions of interest (5–10 mm2) were set at the proximal, mid-substance, and distal regions of the reconstructed ACL. The UTE T2* values of the entire reconstructed ACL were calculated as the average of these three points. Patients were divided into high (27 knees) and low (32 knees) UTE T2* groups by calculating whether their UTE T2* values were greater than the median of the UTE T2* values of all patients. Risk factors for high UTE T2* values were evaluated. Clinical outcomes were compared between the two groups.

      Results

      There were no significant differences in any measured parameters and clinical outcomes between the two UTE T2* groups. Logistic regression analysis revealed that graft tension was a significant risk factor for patients with high UTE-T2* values (P = 0.047, odds ratio [OR] = 2.285). The UTE-T2* values of the 20 N graft tension using the Tension loc system were significantly lower than those of the 40 N using double-spike plate (DSP) with screws at each site and the 30 N using the Tension loc system at the distal site.

      Conclusions

      Higher graft tension was an independent risk factor for high UTE T2* values of the reconstructed ACL.

      Keywords

      Abbreviations:

      ACL (anterior cruciate ligament), BMI (body mass index), CI (confidence interval), DSP (double-spike plate), GBA (Graft bending angle), HT (hamstring tendon), IKDC (International Knee Documentation Committee), KOOS (Knee Injury and Osteoarthritis Outcome Score), LM (lateral meniscus), MM (medial meniscus), MRI (magnetic resonance imaging), OR (odds ratio), PST (pivot shift test), SNQ (signal-to-noise quotient), ROIs (circular regions of interest), UTE (ultrashort echo time)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Knee
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Snaebjörnsson T.
        • Svantesson E.
        • Sundemo D.
        • Westin O.
        • Sansone M.
        • Engebretsen L.
        • et al.
        Young age and high BMI are predictors of early revision surgery after primary anterior cruciate ligament reconstruction: a cohort study from the Swedish and Norwegian knee ligament registries based on 30,747 patients.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 3583-3591
        • Ueki H.
        • Nakagawa Y.
        • Ohara T.
        • Watanabe T.
        • Horie M.
        • Katagiri H.
        • et al.
        Risk factors for residual pivot shift after anterior cruciate ligament reconstruction: data from the MAKS group.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 3724-3730
        • Kim S.J.
        • Moon H.K.
        • Kim S.G.
        • Chun Y.M.
        • Oh K.S.
        Does severity or specific joint laxity influence clinical outcomes of anterior cruciate ligament reconstruction?.
        Clin Orthop Relat Res. 2010; 468: 1136-1141https://doi.org/10.1007/s11999-009-0961-0
        • Musahl V.
        • Rahnemai-Azar A.A.
        • Costello J.
        • Arner J.W.
        • Fu F.H.
        • Hoshino Y.
        • et al.
        The Influence of Meniscal and Anterolateral Capsular Injury on Knee Laxity in Patients With Anterior Cruciate Ligament Injuries.
        Am J Sports Med. 2016; 44: 3126-3131
        • Magnussen R.A.
        • Reinke E.K.
        • Huston L.J.
        • Hewett T.E.
        • Spindler K.P.
        • Andrish J.T.
        • et al.
        Factors Associated With High-Grade Lachman, Pivot Shift, and Anterior Drawer at the Time of Anterior Cruciate Ligament Reconstruction.
        Arthroscopy. 2016; 32: 1080-1085
        • Nicholas S.J.
        • D'Amato M.J.
        • Mullaney M.J.
        • Tyler T.F.
        • Kolstad K.
        • McHugh M.P.
        A prospectively randomized double-blind study on the effect of initial graft tension on knee stability after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2004; 32: 1881-1886https://doi.org/10.1177/0363546504265924
        • van Kampen A.
        • Wymenga A.B.
        • van der Heide H.J.
        • Bakens H.J.
        The effect of different graft tensioning in anterior cruciate ligament reconstruction: a prospective randomized study.
        Arthroscopy. 1998; 14: 845-850https://doi.org/10.1016/s0749-8063(98)70022-2
        • Claes S.
        • Verdonk P.
        • Forsyth R.
        • Bellemans J.
        The, “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature.
        Am J Sports Med. 2011; 39: 2476-2483https://doi.org/10.1177/0363546511402662
        • Scheffler S.U.
        • Unterhauser F.N.
        • Weiler A.
        Graft remodeling and ligamentization after cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2008; 16: 834-842https://doi.org/10.1007/s00167-008-0560-8
        • Anderson K.
        • Seneviratne A.M.
        • Izawa K.
        • Atkinson B.L.
        • Potter H.G.
        • Rodeo S.A.
        Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor.
        Am J Sports Med. 2001; 29: 689-698https://doi.org/10.1177/03635465010290060301
        • Liu S.
        • Li H.
        • Tao H.
        • Sun Y.
        • Chen S.
        • Chen J.
        A Randomized Clinical Trial to Evaluate Attached Hamstring Anterior Cruciate Ligament Graft Maturity With Magnetic Resonance Imaging.
        Am J Sports Med. 2018; 46: 1143-1149https://doi.org/10.1177/0363546517752918
        • Weiler A.
        • Peters G.
        • Mäurer J.
        • Unterhauser F.N.
        • Südkamp N.P.
        Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep.
        Am J Sports Med. 2001; 29: 751-761https://doi.org/10.1177/03635465010290061401
        • Okuda M.
        • Kobayashi S.
        • Toyooka K.
        • Yoshimizu R.
        • Nakase J.
        • Hayashi H.
        • et al.
        Quantitative differentiation of tendon and ligament using magnetic resonance imaging ultrashort echo time T2* mapping of normal knee joint.
        Acta Radiol. 2022; 63: 1489-1496
        • Chang E.Y.
        • Du J.
        • Statum S.
        • Pauli C.
        • Chung C.B.
        Quantitative bi-component T2* analysis of histologically normal Achilles tendons.
        Muscles Ligaments Tendons J. 2015; 5: 58-62
      1. Chu CR, Williams AA. Quantitative MRI UTE-T2* and T2* Show Progressive and Continued Graft Maturation Over 2 Years in Human Patients After Anterior Cruciate Ligament Reconstruction. Orthop J Sports Med 2019;7(8):2325967119863056. DOI: 10.1177/2325967119863056.

        • Warth R.J.
        • Zandiyeh P.
        • Rao M.
        • Gabr R.E.
        • Tashman S.
        • Kumaravel M.
        • et al.
        Quantitative Assessment of In Vivo Human Anterior Cruciate Ligament Autograft Remodeling: A 3-Dimensional UTE-T2* Imaging Study.
        Am J Sports Med. 2020; 48: 2939-2947
        • Kijowski R.
        • Wilson J.J.
        • Liu F.
        Bicomponent ultrashort echo time T2* analysis for assessment of patients with patellar tendinopathy.
        J Magn Reson Imaging. 2017; 46: 1441-1447https://doi.org/10.1002/jmri.25689
        • Chang E.Y.
        • Du J.
        • Iwasaki K.
        • Biswas R.
        • Statum S.
        • He Q.
        • et al.
        Single- and Bi-component T2* analysis of tendon before and during tensile loading, using UTE sequences.
        J Magn Reson Imaging. 2015; 42: 114-120
        • Nakase J.
        • Toratani T.
        • Kosaka M.
        • Ohashi Y.
        • Numata H.
        • Oshima T.
        • et al.
        Technique of anatomical single bundle ACL reconstruction with rounded rectangle femoral dilator.
        Knee. 2016; 23: 91-96
      2. Asai K, Nakase J, Yoshimizu R, Kimura M, Tsuchiya H. Does remnant tissue preservation in anterior cruciate ligament reconstruction influence the creation of the rectangular femoral tunnel? J Orthop Surg (Hong Kong) 2021;29(3):23094990211061249. DOI: 10.1177/23094990211061249.

        • Oshima T.
        • Putnis S.
        • Grasso S.
        • Klasan A.
        • Parker D.A.
        Graft Size and Orientation Within the Femoral Notch Affect Graft Healing at 1 Year After Anterior Cruciate Ligament Reconstruction.
        Am J Sports Med. 2020; 48: 99-108https://doi.org/10.1177/0363546519885104
        • Magnitskaya N.
        • Mouton C.
        • Gokeler A.
        • Nuehrenboerger C.
        • Pape D.
        • Seil R.
        Younger age and hamstring tendon graft are associated with higher IKDC 2000 and KOOS scores during the first year after ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 823-832https://doi.org/10.1007/s00167-019-05516-0
        • Tahara K.
        • Yamagami R.
        • Taketomi S.
        • Inui H.
        • Tanaka S.
        High initial graft tension increases external tibial rotation on the axial plane after anatomical anterior cruciate ligament reconstruction.
        Arch Orthop Trauma Surg. 2021; 142: 1597-1604https://doi.org/10.1007/s00402-021-04098-2
        • Mae T.
        • Shino K.
        • Nakata K.
        • Toritsuka Y.
        • Otsubo H.
        • Fujie H.
        Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part I: effect of initial tension.
        Am J Sports Med. 2008; 36: 1087-1093https://doi.org/10.1177/0363546508314433
        • Katsuragi R.
        • Yasuda K.
        • Tsujino J.
        • Keira M.
        • Kaneda K.
        The effect of nonphysiologically high initial tension on the mechanical properties of in situ frozen anterior cruciate ligament in a canine model.
        Am J Sports Med. 2000; 28: 47-56https://doi.org/10.1177/03635465000280012001
        • Yoshiya S.
        • Andrish J.T.
        • Manley M.T.
        • Bauer T.W.
        Graft tension in anterior cruciate ligament reconstruction. An in vivo study in dogs.
        Am J Sports Med. 1987; 15: 464-470https://doi.org/10.1177/036354658701500506
        • Ma R.
        • Schaer M.
        • Chen T.
        • Nguyen J.
        • Voigt C.
        • Deng X.-H.
        • et al.
        The Effects of Tensioning of the Anterior Cruciate Ligament Graft on Healing after Soft Tissue Reconstruction.
        J Knee Surg. 2021; 34: 561-569
        • Taketomi S.
        • Inui H.
        • Tahara K.
        • Shirakawa N.
        • Tanaka S.
        • Nakagawa T.
        Effects of initial graft tension on femoral tunnel widening after anatomic anterior cruciate ligament reconstruction using a bone-patellar tendon-bone graft.
        Arch Orthop Trauma Surg. 2017; 137: 1285-1291https://doi.org/10.1007/s00402-017-2728-5
        • Chang E.Y.
        • Du J.
        • Chung C.B.
        UTE imaging in the musculoskeletal system.
        J Magn Reson Imaging. 2015; 41: 870-883https://doi.org/10.1002/jmri.24713
        • Fukuda T.
        • Wengler K.
        • Tank D.
        • Korbin S.
        • Paci J.M.
        • Komatsu D.E.
        • et al.
        Abbreviated quantitative UTE imaging in anterior cruciate ligament reconstruction.
        BMC Musculoskelet Disord. 2019; 20https://doi.org/10.1186/s12891-019-2811-x
        • Rougraff B.
        • Shelbourne K.D.
        • Gerth P.K.
        • Warner J.
        Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction.
        Am J Sports Med. 1993; 21: 277-284https://doi.org/10.1177/036354659302100219
        • Abe S.
        • Kurosaka M.
        • Iguchi T.
        • Yoshiya S.
        • Hirohata K.
        Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction.
        Arthroscopy. 1993; 9: 394-405https://doi.org/10.1016/s0749-8063(05)80313-5
        • Falconiero R.P.
        • DiStefano V.J.
        • Cook T.M.
        Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans.
        Arthroscopy. 1998; 14: 197-205https://doi.org/10.1016/s0749-8063(98)70041-6
        • Zarins B.
        • Rowe C.R.
        Combined anterior cruciate-ligament reconstruction using semitendinosus tendon and iliotibial tract.
        J Bone Joint Surg Am. 1986; 68: 160-177
        • Yasuda K.
        • Tsujino J.
        • Tanabe Y.
        • Kaneda K.
        Effects of initial graft tension on clinical outcome after anterior cruciate ligament reconstruction. Autogenous doubled hamstring tendons connected in series with polyester tapes.
        Am J Sports Med. 1997; 25: 99-106https://doi.org/10.1177/036354659702500120
        • Ciccone 2nd, W.J.
        • Bratton D.R.
        • Weinstein D.M.
        • Elias J.J.
        Viscoelasticity and temperature variations decrease tension and stiffness of hamstring tendon grafts following anterior cruciate ligament reconstruction.
        J Bone Joint Surg Am. 2006; 88: 1071-1078https://doi.org/10.2106/JBJS.E.00576
        • Elias J.J.
        • Kilambi S.
        • Ciccone 2nd, W.J.
        Tension level during preconditioning influences hamstring tendon graft properties.
        Am J Sports Med. 2009; 37: 334-338https://doi.org/10.1177/0363546508327561
        • Sherman S.L.
        • Chalmers P.N.
        • Yanke A.B.
        • Bush-Joseph C.A.
        • Verma N.N.
        • Cole B.J.
        • et al.
        Graft tensioning during knee ligament reconstruction: principles and practice.
        J Am Acad Orthop Surg. 2012; 20: 633-645
        • Asai K.
        • Nakase J.
        • Shimozaki K.
        • Yoshimizu R.
        • Kimura M.
        • Tsuchiya H.
        Skeletally immature patient showed lower graft maturity than skeletally mature patient after ACL reconstruction with a rounded rectangular femoral tunnel.
        Sci Rep. 2021; 11: 19968https://doi.org/10.1038/s41598-021-99532-1
        • Hofbauer M.
        • Soldati F.
        • Szomolanyi P.
        • Trattnig S.
        • Bartolucci F.
        • Fu F.
        • et al.
        Hamstring tendon autografts do not show complete graft maturity 6 months postoperatively after anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 130-136
        • Magnussen R.A.
        • Taylor D.C.
        • Toth A.P.
        • Garrett W.E.
        ACL graft failure location differs between allografts and autografts.
        Sports Med Arthrosc Rehabil Ther Technol. 2012; 4: 22https://doi.org/10.1186/1758-2555-4-22
        • Mae T.
        • Shino K.
        • Nakata K.
        • Toritsuka Y.
        • Otsubo H.
        • Fujie H.
        Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part II: effect of knee flexion angle.
        Am J Sports Med. 2008; 36: 1094-1100https://doi.org/10.1177/0363546508317412
        • Li H.
        • Chen J.
        • Li H.
        • Wu Z.
        • Chen S.
        MRI-based ACL graft maturity does not predict clinical and functional outcomes during the first year after ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 3171-3178https://doi.org/10.1007/s00167-016-4252-5
        • Bydder M.
        • Rahal A.
        • Fullerton G.D.
        • Bydder G.M.
        The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging.
        J Magn Reson Imaging. 2007; 25: 290-300https://doi.org/10.1002/jmri.20850